
XRM(2)-DAC-D4/1G User Guide
Document Revision: 2.2

Mar 8, 2018

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

© 2018 Copyright Alpha Data Parallel Systems Ltd.
All rights reserved.

This publication is protected by Copyright Law, with all rights reserved. No part of this
publication may be reproduced, in any shape or form, without prior written consent from Alpha

Data Parallel Systems Ltd.

Head Office

Address: 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

US Office

611 Corporate Circle Suite H
Golden, CO 80401
(303) 954 8768
(866) 820 9956 - toll free
sales@alpha-data.com
http://www.alpha-data.com

All trademarks are the property of their respective owners.

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Table Of Contents

1 Introduction .. 1
 1.1 Block Diagram ... 1
 1.2 XRM and XRM2 ... 4
 1.2.1 Signalling Voltage .. 4
 1.3 Build Level ... 4
 1.4 Alpha Data SDK Versions .. 4
 1.5 Xilinx Tool Versions .. 4
 1.6 ISE Projects ... 4
 1.6.1 Structure .. 4
 1.7 Vivado Projects .. 6
 1.7.1 Vivado Folder Structure ... 6
2 Hardware .. 9
 2.1 Hardware Operation .. 9
 2.2 Connector Signals ... 9
 2.3 DAC Serial Interface .. 9
 2.4 DAC Programming ... 10
 2.5 Synthesiser Serial Interface ... 10
 2.6 Synthesiser Programming ... 10
 2.7 DAC Selftest .. 11
 2.7.1 Pattern testing .. 11
 2.7.2 Fifo Test ... 11
 2.7.3 Selftest ... 11
 2.8 DAC DLL Control ... 11
 2.9 DAC Sync .. 11
 2.10 Multiple DAC synchronisation .. 12
 2.11 Clocking on Virtex4, Virtex5 ... 12
 2.11.1 Low Frequency Operation ... 13
 2.12 Clocking on Virtex6, Kintex7 and Virtex7 ... 14
 2.13 Data Generation .. 15
 2.14 Performance .. 15
 2.15 Board Layout ... 16
3 VHDL Structure .. 18
 3.1 Introduction .. 18
 3.2 Major HDL Components .. 18
 3.2.1 Clock generation and alignment .. 18
 3.2.2 Data Generation and Output .. 18
 3.2.3 Local bus interface ... 19
 3.2.3.1 Virtex4, Virtex5 ... 19
 3.2.3.2 Virtex6, Virtex7, Kintex7 ... 19
 3.2.4 Serial Control ... 19
 3.2.5 Digital I/O ... 20
 3.2.6 General Purpose I/O .. 20
 3.2.7 Host Access via Local Bus ... 20
 3.2.7.1 Virtex4, Virtex5 ... 20
 3.2.7.2 Virtex6, Virtex7, Kintex7 ... 21
 3.3 Waveform Generator Operation .. 22
 3.3.1 Sine Waveform Generator ... 22
 3.3.2 Ramp Waveform Generator ... 23
 3.3.3 Triangle Waveform Generator .. 23
 3.3.4 Square/Pulse Waveform Generator ... 24
 3.3.5 Arbitrary Waveform Generator ... 24
 3.3.6 Self Test Pattern ... 25

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

 3.3.7 Sine Test ... 25
4 Register Description .. 26
 4.1 FPGA_CNTRL_REG (0x00) .. 28
 4.2 FPGA_STATUS_REG (0x01) .. 30
 4.3 CNTR_STAT_REG (0x02) ... 32
 4.4 I_DDS_REG (0x03) ... 34
 4.5 Q_DDS_REG (0x04) ... 36
 4.6 I_INC_REG (0x05) ... 38
 4.7 Q_INC_REG (0x06) ... 40
 4.8 SYNTH_CNTRL_REG (0x07) .. 42
 4.9 SYNTH_STRB_REG (0x08) .. 44
 4.10 IDAC_CNTRL_REG (0x09) ... 46
 4.11 IDAC_STRB_REG (0x0A) ... 48
 4.12 QDAC_CNTRL_REG (0x0B) ... 50
 4.13 QDAC_STRB_REG (0x0C) ... 52
 4.14 DEVICE_REG (0x0D) .. 54
 4.15 I_DDSINIT_REG(0x0E) ... 56
 4.16 Q_DDSINIT_REG(0x0F) ... 58
 4.17 IPATTERN_REG (0x10) ... 60
 4.18 QPATTERN_REG (0x11) ... 62
 4.19 IPATTERN_REG2 (0x12) ... 64
 4.20 QPATTERN_REG2 (0x13) ... 66
 4.21 MEAS0_VAL_REG (0x14) ... 68
 4.22 MEAS1_VAL_REG (0x15) ... 70
 4.23 MEAS2_VAL_REG (0x16) ... 72
 4.24 FREERUN_CNT_REG (0x17) ... 74
 4.25 I_ARBWRITE_REG (0x18) .. 76
 4.26 Q_ARBWRITE_REG (0x19) .. 78
 4.27 ARB _CNTRL_REG (0x1A) ... 80
 4.28 ARB _TICK_REG (0x1B) ... 82
 4.29 AUXCNTRL_REG (0x1E) .. 84
 4.30 PHASE_VALUE_REG (0x1F) .. 86

List of Tables

Table 1 SMA and UFL Connectors .. 17
Table 2 Clock Muxing (D25,D24) .. 29

List of Figures

Figure 1 Block Diagram ... 3
Figure 2 Default Project Structure .. 5
Figure 3 Vivado Project Structure .. 6
Figure 4 Vivado Files ... 8
Figure 5 Virtex 4 Virtex 5 Clocking Scheme ... 12
Figure 6 Low frequency clocking scheme .. 14
Figure 7 Kintex 7 Virtex 7 Clocking Scheme .. 15
Figure 8 XRM(2)-DAC-D4-1G Layout .. 16
Figure 9 Waveform Selection Diagram .. 22

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

1 Introduction
Alpha Data provide three variants of a fast analogue signal generation card operating at sampling frequencies
up to 1 GHz, based on the DAC5681, DAC5681Z and DAC5682Z devices from Texas Instruments.

The DAC5681 provides a non-interpolating architecture for wideband signal generation.

The DAC5681Z implements an interpolating architecture and provides filtering and mixing circuitry and is
essentially a single-channel version of the DAC5682Z.

The DAC5682Z also has an interpolating architecture and provides filtering and mixing circuitry for the two DACs
contained within the package. Note that in this case the second DAC output in each package is not accessible,
although the data can be processed and combined internally as two channels.

All versions utilise a common circuit board with build options being used to match the board configuration to the
DAC fitted.

These boards differ only in the following aspects:
a) The DAC fitted - the DAC5681/ DAC5681Z version uses a single channel DAC normally aimed at

producing wide bandwidth signals. The DAC5682Z has 2 full DAC channels, which allows signal
generation from complex data streams.

b) Minor differences in pin functions.

c) Register addresses and bit allocations for the internal DAC registers in the DAC581Z and DAC5682Z are
supersets of those in the DAC5681.

d) Inclusion of a PLL on the interpolating devices (DAC5681Z, DAC5682Z) for DAC sample clock generation
from a reference clock. In normal circumstances this facility is not used since because of the limited set of
frequencies that can be produced, but if used the high-frequency clocks required for the FPGA must be
synthesised in the FPGA fabric using MMCM or DCM.

These XRM modules are compatible with Alpha-Data's family of FPGA cards fitted with Virtex 4, Virtex 5, Virtex
6, Kintex 7 and Virtex 7 devices.

Both configurations are referred to in this document by the generic title XRM(2)-DAC-D4-1G; where required,
any DAC-specific differences will be made explicit.

The code and hardware descriptions given below reflect the functions implemented at the date of this document.

1.1 Block Diagram
The block diagram (see Figure Block Diagram) shows the major components of the XRM(2)-DAC-D4-1G board.

The DAC has its own dedicated power supplies and uses a mixture of single-ended (serial control) and
differential (data, clocks and synchronisation) signals to/from the FPGA. A clock synthesis/distribution circuit is
included to provide flexible clock generation options.

Dedicated serial interfaces are implemented in the VHDL code to communicate with the DAC and the
synthesiser. These interfaces are initialised automatically by the FPGA as part of the reset sequence.

DAC sample data is transferred to each DAC from the FPGA via 16 LVDS pairs plus synchronisation (SYNC)
and data clock (DCLK) differential pairs. The data clock (DCLK), synchronous with the data, is generated from a
half-rate copy of the DAC clock (DACCLK). The DCLK signal runs at 0.5 * the DAC clock rate present on the
clock input connector. Within the FPGA the DCLK is further divided by 2 for use as a global clock (FABRCLK) for
data generation, so runs at 0.25 * DACCLK.

The synthesiser/distribution circuit provides three options for clocking the DAC.
a) Internal reference, internally synthesised clock, giving integer sub-divisions, including 1, of 1GHz.
b) Externally generated clock, integer sub-divisions, including 1.

Page 1Introduction
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

c) External reference, internally synthesised clock, giving integer sub-divisions of 1GHz.

A pair of LVTTL outputs ('TRIG' and 'AUX') is provided (3V3 signal levels) via SMA connectors. In addition, two
direct connections to FPGA pins via UFL connectors are also available for fast signalling interconnect between
multiple DAC cards or other devices.

Page 2 Introduction
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Figure 1 : Block Diagram

Page 3Introduction
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

1.2 XRM and XRM2
The latest generation of FPGA cards from Alpha Data use a modified version of the XRM interface originally
implemented on legacy FPGA (Virtex4, Virtex5) cards. From a user viewpoint these two interfaces are identical
so references to 'XRM' signals refer also to XRM2 implementations. Where any differences between the two
interfaces are relevant to the operation of the XRM module they will be explicitly stated in the text.

On the XRM(2)-DAC-D4 the principal difference lies in how the I/O voltages for the banks connected to the XRM
are set.

1.2.1 Signalling Voltage

The signals to the DAC are mainly LVDS, with some single-ended signals for serial interfaces etc. Differential
termination is used in the FPGA for clocks etc. which requires that the signalling voltage is set to a suitable level
on the host FPGA card. FPGA cards using the XRM2 interface (e.g. Virtex6, Virtex7 etc.) this voltage is set
automatically. On the XRM interface (boards fitted with Virtex4 or Virtex5) this should be set manually to 2v5.
This voltage level is required solely to ensure correct termination values in the FPGA; the DAC board will not be
damaged if this voltage is inadvertently set to 3v3.

Single-ended signals are all level-translated to hsift signals to/from the device signalling levels to theat of the
FPGA I/O bank supply being used.

1.3 Build Level
The description in this document refer to release 5.0 of the xrm_dac_d4_1g code, dated 15/11/17. Current board
hardware revision is rev 6 and this code supports rev 3 and later builds. Contact the factory for support for board
versions earlier than rev 3.

1.4 Alpha Data SDK Versions
All VHDL code for legacy boards is built using Alpha Data's SDK version 4.9.3. This SDK version is frozen at this
revision.

All VHDL code for current boards uses Alpha Data's ADMXRCG3SDK version 1.7.0.

1.5 Xilinx Tool Versions
The VHDL can be synthesised using either ISE or Vivado. Only FPGA cards fitted with Virtex7 or Kintex7 FPGAs
are supported in Vivado.

The currently supported version of ISE for synthesis and bitfile generation is version 14.7.

The currently supported version of Vivado for synthesis and bitfile generation is version 2017.2.

1.6 ISE Projects

1.6.1 Structure

The example code for ISE builds runs this in batch mode, using makefiles to control the various steps that are
required, based on the methodology used in the both variants of Alpha Data SDKs. The files required for each
FPGA card type are defined in a file with the extension 'prj'; the switches necessary for guiding synthesis, map,
place and route, and bit file generation are defined for each FPGA type in files with the 'scr' extension.

The file paths defined in the prj file reflect the structure of the example code; any changes to the project structure
must be reflected in the paths defined in the prj file.

The default project structure is shown below; this includes the additional folder for the Vivado version of the

Page 4 Introduction
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

project (highlighted).

Figure 2 : Default Project Structure

Page 5Introduction
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

1.7 Vivado Projects

1.7.1 Vivado Folder Structure

The additional folder present in the standard release 'FPGA' folder for producing bitfiles using Vivado is
highlighted. In the case shown, this additional folder is called 'vivado' and is referred to as the main Vivado folder
in this discussion. This folder name be any legal name as long as the paths (relative and absolute) to the SDK
files, the project source and the project core files is preserved. In other words it should be at the same level of
the folder hierarchy as the 'source' and 'cores' folders. Any change in these paths will require modifications to
paths defined in TCL scripts.

The generation of project files for Vivado uses scripts based on those in the Vivado examples provided by the
SDK. The TCL files automate the generation of Vivado project(s), which ensures that the xpr files produced
include all settings required for correct configuration of both synthesis and post-synthesis file generation.
Specifying these options manually is unlikely to set all options correctly so it is strongly recommended that the
TCL files are used to generate project files and folder structures.

This uses the same 'design-model-device' syntax as the Alpha Data SDK examples, where the 'design' equates
to the XRM type, the 'model' equates to the ADMXRC board type and the 'device' equates to the specific FPGA
on the FPGA card. In this case the 'device' field is fixed since these designs are for a specific XRM.

Figure 3 : Vivado Project Structure

Page 6 Introduction
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

The main Vivado folder contains three files - genxpr.bat, genxpr.tcl, makexpr.tcl plus a folder named after each
supported model of board; currently there are only two models supported, the 7K1 and the 7V1.The model
folders contain TCL files that are specific to the design.

Each model folder contains a ‘vivado-scripts’ folder and an xdc file. The xdc file specifies the XRM(2)-to-admxrc
connections for that model. Each 'design-model-device.tcl' file in the ‘vivado-scripts’ folder corresponds to the
scr file for ISE; the 'design-model.tcl' file in the same folder performs a similar function to the prj file. In this file
the required source files (.vhd and .ngc) and the paths to them relative to the main Vivado folder are defined.

All of these files (xdc, TCL) are provided as part of the release. Normally only the 'design-model.tcl' file is ever
altered and then that only when path names need to be corrected. Note that additional (standard) xdc files from
the SDK are required in order to build the bit file correctly and these are also referenced in the 'design-model.tcl'
file.

Once the batch file has been run, the main Vivado folder will contain a third folder which is created by Vivado as
part of the script. This folder is named 'vivado' (note that this is at a level below the main Vivado folder) and the
sub-folders within, named from a combination of the valid model-device variables, are used as the location for
working folders when projects are run.

Genxpr.bat accepts command line parameters to allow projects for single boards, single board types or all
supported boards to be generated. The absence of any command line parameters is interpreted as a command
to make all projects. Using the batch file allows parameters to be passed to the script, something that is not
possible when using the standard TCL ‘source’ command from within Vivado (or other TCL interpreters).

The batch file runs genxpr.tcl in Vivado using batch mode; note that any existing xpr file is not overwritten unless
over-write permission is explicitly specified on the command line. Genxpr.tcl subsequently invokes makexpr.tcl
for each required model and device specified via the command line, creating the working folders for each model/
design combination specified.

Genxpr.tcl is based on the file of the same name that can be found in the SDK Vivado projects. In the SDK case,
the script allows all SDK design examples (simple, uber etc.) to be generated; in the XRM case there is only a
single design, the one for the XRM(2)-dac-d4. Furthermore, in most cases the top-level entity name (reflected in
the vhdl file name) is not the same as the design name so an extra function has been added (gen_design_top)
to handle this.

The folders thus created for each of the model types contains the xpr and a ‘design-model-device_bit_post.tcl’
for that model. The projects are run from the Vivado GUI by opening the required xpr file; any files produced by
Vivado are stored in the same folder to keep things neat. The ‘design-model-device_bit_post.tcl’ specifies some
post-processing of the bit file necessary to produce the bitfile name expected by the SDK application.

Page 7Introduction
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Figure 4 : Vivado Files

It is strongly recommended to retain the folder structure shown in the main Vivado folder in order to ensure that
TCL files provided work correctly. Alterations to this structure will entail the need for extensive modification of
paths/files embedded in the scripts.

Page 8 Introduction
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

2 Hardware
2.1 Hardware Operation

The application must first configure the FPGA with the bit stream using the standard functions provided in the
SDK before any hardware or FPGA registers can be accessed via the local bus .

The various system blocks must be configured in the correct sequence in order to generate analogue signals
correctly. First the clock source must be established, the synthesiser configured, then the FPGA clock
generation circuitry. Once a stable DCLK signal has been established, the DAC internal registers can be
configured to suit the operating frequency required.

Default register settings are written to the DAC and synthesiser following system reset/ FPGA configuration, but
the stability of the clocks during this period cannot be guaranteed so the full clock configuration sequence should
be explicitly run by the application prior to use.

The DAC initialisation sequence, which must be run for any change in clock frequency requiring alteration of the
control bits for the DAC DLL, defaults to the sequence for the DAC5681. This can be easily changed in the VHDL
to default to the DAC5682Z sequence. In both cases the assumed DAC clock frequency is 1GHz. Any change in
the clock speed from this value is used to re-configure the clock multiplexing, the settings for the DCM clock
used by the FPGA and the DAC registers. This application also provides code to interrogate the DAC type and
implement the correct settings.

As shown in the Block Diagram, the DAC sample clock fed to DAC I and DAC Q run at the full rate (1GHz
maximum); the relevant DCLK clocks are at half this rate, since the data interface is DDR. A total of four
differential clock ports are available to capture the data clock reference. In practice, only three are used since the
pinout of the FPGA requires a maximum of three clock regions in order to support the range of Virtex 4 and
Virtex 5 boards. The fourth is connected to a counter for diagnostic purposes.

2.2 Connector Signals
There are five external connectors accessible on the D4-1G board plus a further two which are used for fast
signalling. Of these, only the TRIG and AUX ports have any significant protection whilst the clock input has
limited overdrive protection.

The DAC outputs are ac coupled and present a 50R output impedance, both of which factors give some limited
protection.

The two UFL connectors used for fast signalling are connected directly to FPGA pins. Any signals outwith normal
2v5 LVCMOS signalling levels may cause permanent damage to the FPGA.

2.3 DAC Serial Interface
The reset state of the DAC configures the serial interface for 3-wire operation. The example code uses a 4-wire
interface so the first operation following a hardware reset of the DAC (via the RESETB pin of the DAC) must be
a write to DAC register CONFIG5 which sets D7 to ensure that the DAC is set to operate in 4-wire mode.

The Status and Func ports have no function on the DAC interface.

The maximum speed of the serial interface is 10 MHz (100 ns). The example code runs the state machine at
LCLK/10, controlled by the END_CNT generic. This results in the interface clock running at LCLK/20, limiting the
interface to less than 4 MHz for all settings of LCLK. The default rate is 1.6 MHz for LCLK= 33 MHz (virtex4,
Virtex 5) or LCLK=80 MHz (Virtex6, Virtex 7, Kintex 7).

Page 9Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

2.4 DAC Programming
The register values following a reset of the DAC require to be modified for correct operation. Firstly the interface
must be set to operate in 4-wire mode as noted above. For the DAC 5681 this is essentially all that needs to be
done, since the clock is set up explicitly by the application, which in turn configures the DLL settings and re-starts
the DAC DLL.

The DAC5682Z and the DAC5681Z require that the PLL, FIR and CMIX blocks are disabled; the DAC5682Z also
requires that the output of the second (B channel) is disabled. This requires a read of the "device id" bits to
determine the device fitted to the board.

The operation of any of the DACs requires a hardware reset each time the clock frequency is changed in order to
achieve lock of the DAC DLL, so this reset sequence must be followed each time.

2.5 Synthesiser Serial Interface
The synthesiser (AD9510) is programmed using a 4-wire interface which is virtually identical to that for the DAC.
The maximum operating speed of the serial interface is 25 MHz. The example code has the END_CNT generic
set to a value of 2, forcing the clock rate on the interface to be 0.25 *LCLK rate (~ 8 MHz for the default LCLK of
33 MHz).

The reset state of the synthesiser/distribution circuit results in incorrect divider values for the DAC and the FPGA
clocks so the synthesiser's internal registers must be set explicitly to the required values.

The STATUS port on the serial interface can be used to provide real-time monitoring of various signals within the
synthesiser; this is normally set to the synthesiser lock signal.

The FUNC port provides a real-time control input for the synthesiser. Note that the synthesiser treats this pin as
an active-low reset by default, which must be removed in order to program the synthesiser. For this reason, this
port is normally pulled high and should default high at FPGA reset if used in an application, otherwise the default
configuration data will be ignored by the device.

2.6 Synthesiser Programming
The synthesiser (AD9510) provides three main functions:

a) Clock synthesis
b) Clock routeing and division
c) Clock output type

The output type is configured to suit the requirements of the DAC and FPGA clock inputs and should not be
altered, although unused buffer outputs can be disabled to reduce power consumption. The clock dividers prior to
the buffer outputs are normally configured via the application code but can be customised if required.

In normal use, the DAC clock input, driven by the synthesiser, is programmed to run at twice the FPGA clock
input rate, although for low frequency operation this could be modified but this would probably also require
modification of the FPGA code to suit the new clock ratios. There is a 125MHz lower limit on the operating
frequency of the DLL, equivalent to a data rate of 250MSps. Lower clock rates may be used by disabling the DLL
but are currently not supported. See needs a link :type:target:description thing here- this section Low Frequency
Operationcauses a warning for more information.

Note that the output counters must be re-synchronised using the appropriate command following any
re-programming of the clock circuit; this is built in to the example code.

For clock synthesis, the 1GHz VCXO is controlled by the synthesiser using a 100MHz internal reference. The
clock distribution provides the capability for integer divisions of the VCXO frequency to be used as the DAC clock
and the related FPFGA clocks. An external reference can also be used so that the VCXO (and therefore the DAC
clock) are locked to this reference. The PLL provides only integer-N synthesis so only integer divisions of 1GHz

Page 10 Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

can be used in this mode.Consult the factory for the availability of custom VCXO frequencies for applications
requiring other frequencies.

The external signal source can be used in place of the VCXO as the clock driving the distribution section for the
DAC so can be used as the DAC clock directly or integer divisions of this source can be used.The maximum
input frequency is 1.2 GHz

See the AD9510 data sheet for further information.

2.7 DAC Selftest
The DAC has a number of self-test capabilities built in which are implemented in the example code.

2.7.1 Pattern testing

This consists of writing values of 0xAAAA and 0X5555 in succession. Error flags can be interrogated via the
serial interface to determine the success or otherwise of the data transfers and thereby test the FPGA-DAC
interface.

2.7.2 Fifo Test

The DAC provides the facility to check for FIFO overruns, which normally should not occur. For applications
where low-level control of register bits has been implemented (e.g. FIFO_offset position), this provides
confirmation of correct fifo operation.

2.7.3 Selftest

This runs an internal self-test algorithm which requires 400,000 DACCLK cycles, so completes in < 1ms for a
1GHz clock frequency. Pass/fail flags can be interrogated via the serial interface

2.8 DAC DLL Control
The DAC uses a DLL to align its input registers with DCLK and hence with the data. Any change in the DAC
clock frequency (thus DCLK and FABRCLK) requires the DLL control bits in DAC register CONFIG10 to be set
appropriately and the DLL re-aligned. This in turn requires the application of a hardware reset as part of the
initialisation sequence so any existing settings will be lost. These settings must be explicitly re-written as part of
the sequence.

The DLL control register (address 0xA) in the DAC has several different bit fields listed in the data sheet.
Effectively these can be treated as a single bit field since the values to be used for each frequency are fixed
(see "Electrical Characteristics" in the relevant device data sheet). Note that the frequency break points for the
DAC5682Z changed from (200,300) and (300,500) to (200,325) and (325,500) in the March 09 data sheet.

DAC5681 DCLK
(MHz)

DAC5681Z DCLK
(MHz)

DAC5682Z DCLK
(MHz) Setting

125-150 125-150 125-150 0xCD

150-175 150-175 150-175 0xCE

175-200 175-200 175-200 0xCF

200-325 200-325 200-325 0xC8

325-500 325-500 325-500 0xC0

2.9 DAC Sync
The DAC configuration sequence requires a rising edge to be generated on the internal SYNC signal to instigate

Page 11Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

data output. This signal is normally controlled by the hardware pin (see register description below), but can be
controlled via the serial interface. SYNC is set low prior to clock adjustment (and the FPGA-generated data
forced to output a zero level) to minimise transients on the DAC outputs. The configuration sequence for the
DAC does produce some transients however, a feature of the DAC itself rather than the board design.

2.10 Multiple DAC synchronisation
Multiple DAC synchronisation requires the use of the hardware SYNC pin; in addition the internal FIFOs of the
DACs to be synchronised must also be aligned with each other. This is achieved by ensuring that bits D5 and D4
of DAC register CONFIG5 are initially cleared and the SYNC pin is pulsed high then low. Following this, D5 is set
high and the drive to the DAC SYNC pin then set high. This synchronises the DAC outputs to within ± 1 DAC
clock cycle. See the relevant device data sheet for further information.

2.11 Clocking on Virtex4, Virtex5
DCLK, SYNC and data must be produced synchronously for the DAC. At maximum speed, the data rate required
is 500 MHz DDR. This is possible by using the 4:1 OSERDES components on Virtex4 and Virtex5 FPGAs.

On the XRC cards using Virtex4 and Virtex5 FPGAs, only regional clock inputs are available to XMC modules so
global clocks must be generated using these inputs since the data input pins typically span multiple regions.
There is an unknown (and unconstrainable) delay between the I/O pin and the BUFG input which must be taken
into account when doing this.

Figure 5 : Virtex 4 Virtex 5 Clocking Scheme

This delay is eliminated as shown in Figure Clocking Scheme. The clock input is fed to a pair of DCMs which
generates the clock required by the OSERDES circuitry. Two DCMs are required because of the input and
output clock restrictions of the DCM and the range of frequencies (125 MHz to 500MHz) which must be
produced. Each DCM uses a divide-by-2 pre-scaler to produce FABRCLK at the correct rate.

The output side of the OSERDES is clocked using a copy of the FPGA clock, appropriate to the clock region
occupied by the OSERDES. This is routed via a BUFIO to the OSERDES. The input side of the OSERDES is

Page 12 Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

driven by the BUFR signal derived from the BUFIO clock to maintain timing alignment. The global clock signal
which drives the data generation hardware (FABRCLK) runs at the same speed as this. The DCM aligns the
global clock with these clocks and a constraint on the path lengths when crossing the clock domains ensures that
data has the required setup and hold.

The BUFR's and BUFIO's required for each FPGA type are automatically instantiated by the clock mapping code;
in most cases only two sets of BUFR's and BUFIO's are used.

Note that the clock(s) produced by the DCM do not drive the DAC directly, ensuring that any clock jitter added by
the DCM is not transferred to the DAC.

Clock alignment is controlled by a few state machine components. The "ClockTest" block samples the image of
the incoming clock signal via a DDR register over a number of cycles and compares the register output with the
value expected for alignment, setting a pass or fail flag accordingly. The "PhaseAdjust" block shifts the DCM
phase under the control of the "AlignControl" block.

When triggered via the local bus, the "AlignControl" block samples the pass/fail flag from "Clocktest" for the full
range of phase shifts, determines the optimum setting and then implements this phase offset using
"PhaseAdjust". Once completed, AlignControl signals back to the user application the result of the alignment
operation.

This scheme also ensures that all clocks are constrained within the limits imposed by the various components in
the FPGA for all speed grades of the FPGA. The DCM clock runs at half the rate of the DCLK rate. Hence for
1GHz DAC operation, the BUFIO clock (DCLK) runs at 500 MHz maximum whilst the DCM clock (FABRCLK)
runs at 250 MHz maximum.

The BUFR clocks are used to provide diagnostic confirmation of the presence of the clock signals, in the same
way as the spare clock signal noted above. In these cases the "divide-by-2" attribute must be set since the
frequency limit for BUFR signals is 300 MHz maximum.

2.11.1 Low Frequency Operation

The above scheme is suitable for operation down to roughly 100 MHz. Below this frequency the use of the DCM
becomes more problematic (e.g. lower frequency limit of 30 MHz). Interpolation techniques could be used to
maintain the clock above the DCM limits whilst generating data at a much lower speed, but a simpler clocking
scheme (shown in Figure Low frequency clocking scheme) can be used, which also has the benefit of
simplifying the data generation requirements.

Page 13Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Figure 6 : Low frequency clocking scheme

Here the data generation in the FPGA runs at the same speed as the DAC sample clock fed to the DACs, so the
FPGA generates 1 sample per DAC sample clock cycle instead of 4 samples at 0.25 *DAC sample clock cycle.
This removes the need for OSERDES, DDR registers etc and simplifies the interface to the DAC and the data
generation.

DCM alignment is no longer required since all data generation and output uses the same global clock. The
unconstrained delay which results from using the clock-capable input appears as a simple phase offset, which is
irrelevant since the DAC synchronises to the DCLK signal generated synchronously with the data via a toggling
bit; data still changes on each edge of this clock. The DAC DLL Bypass bit is normally set when running in this
mode since the operating speed is typically less than 125 MHz.

Clearly there is some overlap in the clock speed ranges which these two architectures can support which is also
dependent on FPGA speed; the user should choose the one best suited to the application. Code for this style of
operation is not included in the example code.

On Virtex6 and later boards, this restriction does not apply as there is no MMCM used.

2.12 Clocking on Virtex6, Kintex7 and Virtex7
On the ADMXRC cards using Virtex6, Kintex7 and Virtex7 FPGAs, clock distribution is simpler. Only one regional
clock input is used as the clock source, selected to be the clock pair which can drive the clock regions above and
the below the one directly clocked by the selected clock pair. This routed via a BUFMR and the BUFRs
(configured to divide by 2) to clock these additional regions and the OSERDES components. The incoming
clocks (at the half the DAC clock rate) are distributed via BUFIOs to drive the OSERDES components. The
master BUFR clock is also routed through a global clock buffer to provide the clock for the data generation
circuitry in the FPGA fabric.

Page 14 Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Figure 7 : Kintex 7 Virtex 7 Clocking Scheme

The remaining clock inputs are used for clock monitoring and diagnostic purposes only

2.13 Data Generation
Each DAC receives data via a 16-bit DDR interface, plus DCLK, generated by the data source synchronously
with the data. Clock speed restrictions in the FPGA force the use of OSERDES components in order to be able
to run at the full rate (1G sample per second) This in turn means that the data generation circuitry must provide
4 consecutive data samples on each FABRCLK clock cycle.

In the example code this is implemented by instantiating four identical data sources for each type of waveform
produced, each offset by the appropriate amount in order to provide the correct signal for each time slot.

2.14 Performance
Typical performance when producing a 125 MHz sine wave using the internal 1GHz clock is shown below. Note
that the figure shows both the fundamental frequency (Ffund) and the image frequency (Fsample-Ffund) of the
fundamental caused by sampling. The image frequency and higher components are normally filtered out by a
low-pass filter which has a cut-off frequency Fcutoff <= Fsample /2, the midpoint of the figure.

Page 15Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

2.15 Board Layout

Figure 8 : XRM(2)-DAC-D4-1G Layout

Page 16 Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Connector Function Signal Levels

J1 I channel DAC output +/500 mV (+4 dBm)

J2 Q channel DAC output +/500 mV (+4 dBm)

J3 Ext. Clock input 0dBm +6 dB

J4 AUX Dig I/0 3v3 LVTTL

J5 TRIG Dig I/O 3v3 LVTTL

J6 General Purpose Fast I/O, p side FPGA I/O bank voltage

J7 General Purpose Fast I/O, n side FPGA I/O bank voltage

Table 1 : SMA and UFL Connectors
Note that J6 and J7 connect directly to the FPGA pins and so use the same signalling voltage as the FPGA bank
(1.8 volts or 2.5 volts). Extreme caution should be used when employing these connectors to avoid damage to
the FPGA.

Page 17Hardware
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

3 VHDL Structure
3.1 Introduction

The basic data flow is illustrated in figures 5 and 7 above. The clock components provide a clock for the output
stage at the appropriate rate and the global clock for running the data generation circuitry. Each channel has its
own data generation, DCLK and SYNC generation circuit under control of the host via the local bus interface.

3.2 Major HDL Components
Two top level design files are provided; one for use with ISE (xrm_dac_d4_1g_ise.vhd) and one for use with
Vivado (xrm_dac_d4_1g.vhd). The ISE version includes ports for V4,V5,V6,V7 and K7 designs; unused top-level
ports disappear in ISE during the process of synthesis, place-and-route and bit-file generation. In Vivado, unused
top level ports generate an error. Functionally these are the same although the Vivado version also uses a
wrapper component in order to simplify migration to other interface types (e.g. AXI). It is anticipated that future
releases of ISE-style code will migrate to using the wrapper component. For the purposes of discussion, both
styles of top-level component are implied by the term 'top level file'

The top level file contains a mixture of sequential statements and component instantiations. These implement
the main blocks of code used in this design:

3.2.1 Clock generation and alignment

The DAC_Clocks component implements the clock generation and alignment code.

Restrictions on the maximum clock rates for the various buffers inside the FPGA require that the OSERDES
output clock must be driven using a BUFR (or a BUFG). This in turn requires selection of the appropriate BUFR
mapping based on the regional clocking capabilities of each FPGA, a function implemented in the dac_ck_map
module.

The BUFRs are instantiated in the dac_ck_ip modules; there are three of these, one for each of the possible
regional clock inputs available. The circuitry to generate the global clock is also contained in this module, with the
generic parameter USE_AS_REF set TRUE on a single instance to instantiate a single instance of the global
clock circuitry module, ck_align.vhd.

For Virtex4 and Virtex5 designs only, the ck_align module uses the dcm_align.vhd, ps_adj.vhd and align_test.vhd
components plus it instantiates the DCMs appropriate to the FPGA being used. These three components
implement the following tasks;

a) Sampling the input clock signal and generating a pass/fail flag with regard to the alignment of the global
clock with the input clock (align_test.vhd).

b) Control of the phase setting of the DCM (ps_adj.vhd).
c) State machine to generate the handshake signals to the host, phase shift and alignment test modules,

determine the optimum phase settings accordingly and then to apply this setting to align the clock
(dcm_align.vhd).

Two DCMs must be used in each design, since the range of clock frequencies required spans the limits of the LF
and HF modes of DCM operation. These operate with a pre-scaling divide by 2 counter to ensure that clocks are
within the valid ranges for all speed grades of Virtex 4 and Virtex5. The appropriate DCM (LF/HF) is enabled by
the application software, based on the clock frequency specified by the user, as part of the set-up sequence of
the clock chain.

3.2.2 Data Generation and Output

The dac_channel.vhd component instantiates the data generation and output circuitry for each channel. All data

Page 18 VHDL Structure
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

generation is performed at the FABRCLK rate, with appropriate synchronisation of control signals from the local
clock domain.

The FPGA data generation drives a 4:1 OSERDES, so must generate four samples of data for each cycle of
FABRCLK. This is achieved by operating four identical data sources in parallel. For sine waves, four DDS
generators are used, each offset in phase by the required amount to correctly interleave the data. The ramp
generator produces four offset data streams in the same way and this signal is used as the basis of triangle and
square wave generation. User-implemented data sources must implement the same mechanisms.

3.2.3 Local bus interface

3.2.3.1 Virtex4, Virtex5

The local bus interface consists of two components plus a small number of related processes and is based on
the parallel-bus architecture on these FPGA cards.

Address decoding is performed here to enable read or write access by the host. This decoding is used to qualify
read and write operations.

For writes, address-qualified write-enables are used within processes to implement the registers required to
control the various elements in the design. For reads, address-qualified output-enables are used to enable
retrieval of register settings and access to read-only registers.

PLXDSSM is a standard component from the Alpha-Data SDK which implements the interfacing and decoding
required for the local bus signals.

XRC_CONFIG implements a number of the glue-logic functions associated with the local bus which require
coding specific to the type of FPGA board being targeted. The latter is identified by including the appropriate
configuration file in the project list.

3.2.3.2 Virtex6, Virtex7, Kintex7

Virtex6, Virtex7, Kintex7 boards use a serial-bus-based OCP interface for communications with the host via the
bridge. The ocpbus_if.vhd component is a wrapper for adb3_ocp_simple_bus_if.vhd and the associated files
from the SDK. This isolates the main XRM code from any SDK modifications by preserving a standard interface.
This component also supplies the clock interfaces for the local bus and the 200 MHz reference clock. By default
the local bus is run at 80 MHz although this can be run at up to 200 MHz if required.

Address decoding and register reads and writes are performed in much the same way as for the parallel local
bus with a few noteworthy exceptions. Read decoding does not use an output enable signal and register
addresses are aligned on 128-bit addresses instead of the 32-bit addresses used for the parallel bus. This is
required in order to ensure that the bursting (four 32-bit reads or writes per access) inherent in the OCP bus
operation does not cause inadvertent register accesses which might affect volatile data e.g. FIFOs.

3.2.4 Serial Control

The serial interface code (sampck_synth.vhd) is common to both synthesiser and DAC serial control and is
implemented using a simple state machine which includes a programmable update clock rate to accommodate
various bit-rates.

Read and write operations are initiated by generating a rising edge on the appropriate strobe port. An
initialisation sequence can also be run from a single strobe signal.

The strobe signal triggers the transfer of data and address values via a state machine , with handshaking bits to
synchronise with the host application.

For writes, the register address byte and write data byte specified on the external ports are used to form the
serial stream sent to the device. For reads, only the address is used - any value present on the write port is

Page 19VHDL Structure
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

ignored. At the end of the transfer process the data read from the devices is registered on the read data port at
the end of the handshake sequence. This data is held until the next read sequence is triggered.

Initialisation sequences normally use only the address and data values specified in the initialisation table
contained in sampck_synth_init.vhd. However, the configuration sequence for the DAC requires that part of this
initialisation sequence can be varied in order to configure the DLL control bits correctly, so an additional port is
used to provide this information for the instantiations driving the DACs; this port is ignored by the synthesiser
instantiation which uses the same piece of VHDL code.

A further port is used specify the "device type" which controls the width of each field in the serial stream to suit
the device being programmed. This must also be programmable in order to preserve code commonality, since
the sequences for each of the DACs is slightly different and the field widths of the serial stream differ between
the DAC and the synthesiser.

3.2.5 Digital I/O

The digital I/O pins use signalling levels of 3.3 volts and can be driven directly by the host from a dedicated
register bit, one for each port, or be used as inputs. Ports can be individually configured as inputs or outputs. In
addition the ARB waveform generator synchronisation marker can be output via these ports. All signals on these
ports are clocked using the FABRCLK clock.

3.2.6 General Purpose I/O

The general purpose I/O pins, which are connected to J6 and J7, can be read or written as single-ended signals
in the example code. Write bits are mapped to register bits with associated output enables. Direction defaults to
inputs, with the state of the signal at the FPGA pins being read back in the same way as other signals.

These can also be configured to be used as a single differential signal input/output if required.

Suitable cableforms can be obtained from Samtec or Hirose director from a number of distributors (e.g. Farnell
168-8079, 168-8067).

3.2.7 Host Access via Local Bus

Data register addresses are defined in xrm_dac_d4_1g_pkg.vhd (and replicated in hwdefs.h for use by the C
application) for both types of bus.Address decoding in the VHDL is divided into two parts - page addresses and
register addresses within that space. The address ranges required to align register addresses on 128-bit or
32-bit boundaries as required by each card are defined in the appropriate 'xrc_build_pkg' library for the FPGA
card being used. The 'xrc_build_pkg' definitions also contain FPGA type definitions (e.g. USE_XRC6_BOARD
etc.) which are used to control FPGA-specific build options within the VHDL code via generate statements.

All registers are accessed using offsets from the base address of the memory space, which is returned by
software functions provided in the SDK. Data can be read and written via calls using dedicated functions in the
SDK or by directly de-referencing the fpgaSpace pointer.

Additional SDK functions are used to configure the FPGA with the specific bit file, set various system clocks and
pass command-line parameters.

The application also provides low-level test and diagnostic routines.

The PARLOCBUS_IF (Virtex4, Virtex5 and OCPBUS_IF (Virtex6, Virtex7, Kintex7) provide a standard interface
for address decoding, irrespective of the type of local bus being implemented.

3.2.7.1 Virtex4, Virtex5

All registers are 32 bits wide; addresses A1 and A0 are unused, with the PLXDSSM component embedded in the
PARLOCBUS_IF component doing most of the work involved in decoding local bus signals and generating the
signals to ensure correct timing for reads and writes.

Page 20 VHDL Structure
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Address decoding uses address bits 22 to 19, with bit 23 zero and register addresses within each page are
decoded using local address bits 9 to 2 for 32 bit accesses.

3.2.7.2 Virtex6, Virtex7, Kintex7

All registers are 32 bits wide but are 128-bit aligned, so addresses A1 to A3 inclusive are unused and register
addresses within each page are decoded using local address bits 11 to 4.

The OCPBUS_IF component encapsulates the ADB3_OCP_SIMPLE_BUS_IF component which generates the
interface and timing signals required for correct operation in the same manner as PLXDSSM above.

Page 21VHDL Structure
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

3.3 Waveform Generator Operation
The example code provides a number of built-in waveform generation options. In each case the fact that
FABRCLK (which drives the FPGA fabric) runs at one quarter of the DAC sample clock frequency requires that
four samples are produced by the generators on each FABRCLK cycle so typically four generators of each type,
acting in parallel, are required.

A number of registers are shared across the various signal types to reduce the total numebr of registers required.
Where applicable, this is indicated in the relevant register description in the register description section below,
which aslo details the allocation of register bits.

The waveform output is selected using a total of six bits which control a number of cascaded 2:1 multiplexers.
One bit is used to enable the data output to the DAC; if this bit is set to zero then all zeroes is transmitted. A
second bit is used to select betwen the pattern test data sequence and the fixeed sine as the test waveform (see
below).

In normal operation, the waveform output is selected from one of sine (DDS generated), ramp,triangle, pulse/
square or the arbitrary waveform, with the DDS sine being the default.

Figure 9 : Waveform Selection Diagram

The four waveform selection bits for each channel are located in the control register (D1,D28,D3,D2 for I
channel, D5,D29,D7,D6 for Q channel).

3.3.1 Sine Waveform Generator

The main sine wave generator is based on a DDS core. Four cores are used in parallel to provide the four
samples required on each FABRCLK cycle.

The signal frequency produced is determined by the value of the increment (rate of change of phase) specified
for the phase accumulatorof each core. This phase accumulator is 32 bits wide hence 0x8000_0000 corresponds
to a normalised frequency of 0.5. The actual frequency generated is given by:

Fout = Fdac * Fnorm = Fdac * RegVal/(232)

where Fdac = the DAC sample clock frequency (= 4 * FABRCLK frequency), Fnorm is the normalised frequency and
RegVal is the register setting.

Page 22 VHDL Structure
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Once the required register value Val is calculated as above, the actual increment applied to each core is 4*Val,
with the inital phase accumulator value for each core offset fromt the preceding one by Val. Thus core 0
produces the values for sample numbers 0,4,8 ..., core 1 produces the values for sample numbers 1,5,9 .., core
2 produces the values for sample numbers 2,6,10 .. and core 3 produces the values for sample numbers 3,7,11
.. etc.

In a similar fashion the starting phase of each channel (nominally 0 degrees) can be specified to produce
quadrature, anti-phase or arbitrary phase offsets between the I and Q channels. The initial phase value is scaled
in the same way as frequency increments

A value of 0x8000_0000 corresponds to a phase offset of 180 degrees. The initial phase offset is given by:

Offs = 360 degrees * RegVal/(232)

where RegVal is the register setting

This offset is used to calculate and load the necessary offset into each core, with core 0 receiving an offset of
Offs, core 1 receiving an offset of 2*Offs,core 2 receiving an offset of 3*Offs and core 3 receiving an offset of 4*
Offs.

Typically this offset is written to only one channel.

3.3.2 Ramp Waveform Generator

For simple ramp generation, the increment value Inc at the DAC sample clock frequency is calculated.

The increment Inc is determined by the normalised frequency according to the value:

Inc= 216 * Fnorm

since the DAC is a 16 bit device.

Four ramp accumulators are used in parallel, with each accumulator incremented by 4*Inc and each offset from
the preceding one by Inc in the same manner as ther sine wave generation.

Data simply rolls over, so non integer divisions of 2^16 will produce ramps with different starting points but the
same slope on each cycle until the starting value is reached again

3.3.3 Triangle Waveform Generator

For triangle generation, 3 registers are used. The 16-bit start and end values, specified in a single 32-bit register,
force the signal value at the zero-crossing points of the positive and negative ramp generation.

The 16-bit slope values (for positive and negative slopes) are used to increment the start and end values
respectively and are specified in a single 32-bit register.

A third 32-bit register is used as a pair of 16-bit values specifying the number of increments applied for the
positive and negative edges.

This ensures that consistent triangle waveforms are produced; note that the frequencies and slopes possible are
constrained by the fact that four samples must be produced on each FABRCLK cycle and that waveforms must
be repetitive.

The slope value is calculated based on the DAC sample clock.

Four ramp accumulators are used in parallel, with each accumulator incremented by 4*the slope value with each
accumulator offset from the preceding one by the slope value in the same manner as ther sine wave generation.

Page 23VHDL Structure
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

3.3.4 Square/Pulse Waveform Generator

For square wave generation, the waveform output is set to the mark value for a given number of FABRCLK
cycles and is then followed by the space value for separetely specified number of clock cycles.

One 32-bit register is used to specify the mark and space durations whilst a second is used to specify the mark
and space levels.

Additional pulse width resolution is provided by four control bits in a separate register, which allow the mark and
space durations to be adjusted in DAC smaple clock cycles to provide fine control of pulse/square waveforms.

3.3.5 Arbitrary Waveform Generator

ARB memory consists of 4k samples (16 bits wide) in each channel. ARB waveforms can be any length but
should be zero-filled if not an exact multiple of 4 samples. An ARB sequence can be a single non-zero value, but
the number of samples read out to the DAC is always a multiple of 4 (minimum 4 samples) because of the
FABRCLK and DAC sample clock ratios. In the example code, data is automatically zero-filled to the end of the
RAM.

Writing more data than the capacity of ARB memory will cause the write address to wrap around and thus
over-write previously-written values (this is prevented from occurring in the example code routines).

The data writes are controlled by an 11-bit address counter, where each address references a pair of 16-bit
samples. Data is written by sequential writes to the I_ARBWRITE_REG (and/or Q_ARBWRITE_REG) register as
pairs of consecutive samples, each 16 bits wide.

Data pairs are written in time-order and each 32 bit write must have the earliest of the two samples in the low
word and the latest sample in the upper word. The ARB busy bit pulses high during the process of writing to the
ARB memory, but each write completes within the access time of the host doing the write thus eliminating any
need for handshaking during this process.

The write address is auto-incremented by each write to the ARB ; the initial sample is written at address zero (the
write address is reset to zero when the (FPGA) generator reset bit is pulsed high).

The length of the ARB sequence (4096 samples maximum) played out from the RAM is controlled by a
programmable-length end address counter. The end address for playout is written into hardware by setting the
appropriate last address value in the ARB control register and then pulsing the 'Load Enable' bit for that channel
in the same register.

The 'Run Enable' bit is the global enable bit which must be set for the ARB to produce a non-zero signal on any
channel.

The ARB can function in two modes - continuous or burst mode. The active operating mode is controlled by the
value of the Continuous/Burst enable bit in the ARB control register; in both cases the 'Run Enable' bit must be
set to obtain non-zero output.

In continuous mode, samples from the start of the RAM to the end address are played out, with the RAM address
rolling over to 0 following the end address. This sample sequence is repeated continuously. Short burst-type
waveforms can be created by setting the ARB length to include zero-padding samples stored in the RAM.

As an example, assume the signal is N samples of a sine wave followed by M samples of zero values. The ARB
length, L, is thus specified as (N+M), where (N+M) modulo 4 =0 and (N+M) <= 4096. This results in a burst of N
sine samples followed by M zero samples, which repeats every (N+M) DAC sample clocks. With the same data
set, specifying the ARB length L to be N (assuming N modulo 4 = 0), only the sine samples are continuously read
out.

The limited length of the memory (4k samples), means that the maximum repetition rate at 1GHz DAC sample
clock rate is limited to approximately 4 us.

Page 24 VHDL Structure
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Burst mode is used to extend the reptition rates achievable by means of a 16-bit count register C, where C is the
count of repetitions of the ARB length L (the RAM end address). When Burst mode is enabled, the L samples
from the RAM are read out; these are then followed by { (C-1)*L} DAC sample clocks of zero-value samples; this
entire sequence is then repeated.

The ARB can also output a digital gate signal ("tick"), synchronous with the data read from RAM, for use with
external hardware. The rising edge of this signal occurs at the start of the burst; the width can be specified to be
a fixed number of FABRCLK cycles up to the length L of the signal in the RAM using the tick width register.

The TRIG and AUX hardware I/O ports can output this tick by first setting the multiplexer bit to select the tick
signal as the drive source for the AUX or TRIG signal and also configuring the TRIG and/or AUX ports as
outputs. The ARB tick for the I channel is available on the TRIG port whilst that for the Q channel is available on
the AUX port

3.3.6 Self Test Pattern

The DAC provides a pattern testing mode where what is received on the data inputs is compared to the expected
pattern of 0xAAAA/0x5555 and the result of this comparison soignalled via a status bit.

The FPGA must uses two 32-bit registers on each channel to implement this, with the two registers providing the
four consecutive sample values required on each FABRCLK cycle.

Having two programmable registers allows the test pattern to be varied, allowing individual bits to be tested.

3.3.7 Sine Test

A simple 8-sample sine wave can be forced to be the signal source driving the DACs for test and diagnostic
purposes using a single bit.

Page 25VHDL Structure
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4 Register Description
All data accesses are 32 bits wide; for writes, unused bits are ignored whilst on reads unused bits are always
mapped as a logic low.

A total of 30 registers are used, although not all bits are active controls.

Register Name Address

CNTRL_REG 0X00

STATUS_REG 0X01

CNTR_STATUS_REG 0X02

I_DDS_REG 0X03

Q_DDS_REG 0X04

I_INC_REG 0X05

Q_INC_REG 0X06

SYNTH_CNTRL_REG 0X07

SYNTH_STRB_REG 0X08

IDAC_CNTRL_REG 0X09

IDAC_STRB_REG 0X0A

QDAC_CNTRL_REG 0X0B

QDAC_STRB_REG 0X0C

DEVICE_REG 0X0D

I_DDSINIT_REG 0X0E

Q_DDSINIT_REG 0X0F

IPATTERN_REG 0X10

QPATTERN_REG 0X11

IPATTERN_REG2 0X12

QPATTERN_REG2 0X13

MEAS0_VAL_REG 0X14

MEAS1_VAL_REG 0X15

MEAS2_VAL_REG 0X16

FREERUN_CNT_REG 0X17

I_ARBWRITE_REG 0X18

Q_ARBWRITE_REG 0X19

ARB _CNTRL_REG 0X1A

ARB _TICK_REG 0X1B

Not used 0X1C

Not used 0X1D

AUXCNTRL_REG 0X1E

Page 26 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Register Name Address

PHASE_REG 0X1F

Page 27Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.1 FPGA_CNTRL_REG (0x00)
The control register provides various bits for controlling timing and resets.

D31 to D24:

D31 Clock align request, rising edge triggers alignment.

D30 Select HF DCM when low (default), LF DCM when high.

D29 Q channel signal select bit 2

D28 I channel signal select bit 2

D27 Unused.

D26 Sync enable for I DAC and QDAC.

D25 Clock mux control msb.

D24 Clock mux control lsb.

D23 to D16:

D23 'GPIO_N' port direction signal, 1=output, 0=default=input.

D22 'GPIO_N 'port output signal.

D21 'GPIO_P' port direction signal, 1=output, 0=default=input.

D20 'GPIO_P' port output signal.

D19 'AUX' port direction signal, 1=output, 0=default=input.

D18 'AUX' port output signal.

D17 'TRIG' port direction signal, 1=output, 0=default=input.

D16 'TRIG' port output signal.

D15 to D8:

D15 Alignment reset signal,1=reset active.

D14 Q channel FPGA data generator reset (1=reset active).

D13 I channel FPGA data generator reset (1=reset active).

D12 QDAC hardware reset, 1=reset active.

D11 IDAC hardware reset, 1=reset active.

D10 Determines DLL bypass bit in initialisation sequence (0=default=DLL
enabled).

D9 VCXO oscillator enable (1 = oscillator running).

D8 100MHz reference oscillator enable (1 = oscillator running).

D7 to D0:

D7 Q channel signal select bit 1

D6 Q channel signal select bit 0

D5 Q channel signal select bit 3, msb

D4 Q channel output enable; 0=all zeroes transmitted, 1=FPGA
generator data transmitted to DAC.

D3 I channel signal select bit 1

Page 28 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 I channel signal select bit 0,lsb

D1 I channel signal select bit 3, msb

D0 I channel output enable; 0 = all zeroes transmitted by FPGA, 1 =
FPGA generator data transmitted to DAC.

Clock
mux msb

Clock
mux lsb Synth sample clock Synth reference clock

0 0 Extck input Extck input

0 1 Extck input Internal reference

1 0 Internal VCXO Extck input

1 1 Internal VCXO Internal reference

Table 2 : Clock Muxing (D25,D24)

Page 29Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.2 FPGA_STATUS_REG (0x01)
The read-only status register provides read back of the various system status bits for control and diagnostic use.

D31 to D24:

D31 XRM pcb revision setting, msb

D30 XRM pcb revision setting bit 2

D29 XRM pcb revision setting bit 1

D28 XRM pcb revision setting, lsb

D27 unused

D26 unused

D25 unused

D24 Q serial status flag

D23 to D16:

D23 I serial status flag

D22 unused

D21 Q sync enable acknowledge

D20 I sync enable acknowledge

D19 unused

D18 unused

D17 Alignment fault detected if high following alignment sequence
(meaningful for V4

D16 Alignment routine busy if high (meaningful for V4

D15 to D8:

D15 DCM lock flag (1=locked

D14 DAC 3V3 regulator monitor bit, 1= power good.

D13 DAC 1V8 regulator monitor bit, 1= power good.

D12 Unused.

D11 GPIO_N (J7) input bit.

D10 GPIO_P (J6) input bit.

D9 External 'AUX' input signal.

D8 External 'TRIG' input signal.

D7 to D0:

D7 Q channel signal generator busy (1 = busy).

D6 Q channel initialisation sequence flag (1 = init sequence running).

D5 Q channel DAC serial interface complete flag (1 = complete, set at
end of transfer and cleared by start of next transfer).

D4 Q channel DAC serial interface status (1 = transfer in progress).

D3 I channel signal generator busy (1 = busy).

Page 30 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 I channel initialisation sequence flag (1=init sequence running).

D1 I channel DAC serial interface complete flag (1=complete, set at end
of transfer and cleared by start of next transfer).

D0 I channel DAC serial interface status (1 = transfer in progress).

Page 31Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.3 CNTR_STAT_REG (0x02)
Data read from this read-only location returns the detection counter bits for each of the four clock inputs where
instantiated in the FPGA.

D31 to D24:

D31 unused

D30 unused

D29 unused

D28 unused

D27 unused

D26 unused

D25 unused

D24 unused

D23 to D16:

D23 unused

D22 unused

D21 unused

D20 unused

D19 200MHz ref clock detect counter D3 msb

D18 200MHz ref clock detect counter D2

D17 200MHz ref clock detect counter D1

D16 200MHz ref clock detect counter D0 lsb

D15 to D8:

D15 Test clock input, detect counter D3 msb

D14 Test clock input, detect counter D2

D13 Test clock input, detect counter D1

D12 Test clock input, detect counter D0, lsb

D11 Clock input Z, detect counter D3, msb

D10 Clock input Z, detect counter D2

D9 Clock input Z, detect counter D1

D8 Clock input Z, detect counter D0, lsb

D7 to D0:

D7 Clock input Y, detect counter D3 msb

D6 Clock input Y, detect counter D2

D5 Clock input Y, detect counter D1

D4 Clock input Y, detect counter D0, lsb

D3 Clock input X, detect counter D3 msb

Page 32 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 Clock input X, detect counter D2

D1 Clock input X, detect counter D1

D0 Clock input X, detect counter D0, lsb

Page 33Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.4 I_DDS_REG (0x03)
Data written to this location sets the DDS phase accumulator increment to determine the output frequency based
on the DAC sample clock frequency.

The actual output frequency is related to the signed 32-bit register value by:

Fout = Fdac * Fnorm = Fdac * RegVal/(232)

where Fdac = the DAC clocking frequency (= 2*DCLK=4 * FABRCLK frequency), Fnorm is the normalised frequency
and RegVal is the register setting.

D31 to D24:

D31 DDS phase increment D31 msb

D30 DDS phase increment D30

D29 DDS phase increment D29

D28 DDS phase increment D28

D27 DDS phase increment D27

D26 DDS phase increment D26

D25 DDS phase increment D25

D24 DDS phase increment D24

D23 to D16:

D23 DDS phase increment D23

D22 DDS phase increment D22

D21 DDS phase increment D21

D20 DDS phase increment D20

D19 DDS phase increment D19

D18 DDS phase increment D18

D17 DDS phase increment D17

D16 DDS phase increment D16

D15 to D8:

D15 DDS phase increment D15

D14 DDS phase increment D14

D13 DDS phase increment D13

D12 DDS phase increment D12

D11 DDS phase increment D11

D10 DDS phase increment D10

D9 DDS phase increment D9

D8 DDS phase increment D8

D7 to D0:

D7 DDS phase increment D7

Page 34 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D6 DDS phase increment D6

D5 DDS phase increment D5

D4 DDS phase increment D4

D3 DDS phase increment D3

D2 DDS phase increment D2

D1 DDS phase increment D1

D0 DDS phase increment D0, lsb

Page 35Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.5 Q_DDS_REG (0x04)
Data written to this location sets the DDS phase accumulator increment to determine the output frequency based
on the DAC sample clock frequency.

The actual output frequency is related to the signed 32-bit register value by:

Fout = Fdac * Fnorm = Fdac * RegVal/(232)

where Fdac = the DAC clocking frequency (= 2*DCLK=4 * FABRCLK frequency), Fnorm is the normalised frequency
and RegVal is the register setting.

D31 to D24:

D31 DDS phase increment D31 msb

D30 DDS phase increment D30

D29 DDS phase increment D29

D28 DDS phase increment D28

D27 DDS phase increment D27

D26 DDS phase increment D26

D25 DDS phase increment D25

D24 DDS phase increment D24

D23 to D16:

D23 DDS phase increment D23

D22 DDS phase increment D22

D21 DDS phase increment D21

D20 DDS phase increment D20

D19 DDS phase increment D19

D18 DDS phase increment D18

D17 DDS phase increment D17

D16 DDS phase increment D16

D15 to D8:

D15 DDS phase increment D15

D14 DDS phase increment D14

D13 DDS phase increment D13

D12 DDS phase increment D12

D11 DDS phase increment D11

D10 DDS phase increment D10

D9 DDS phase increment D9

D8 DDS phase increment D8

D7 to D0:

D7 DDS phase increment D7

Page 36 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D6 DDS phase increment D6

D5 DDS phase increment D5

D4 DDS phase increment D4

D3 DDS phase increment D3

D2 DDS phase increment D2

D1 DDS phase increment D1

D0 DDS phase increment D0, lsb

Page 37Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.6 I_INC_REG (0x05)
Used for both simple ramp (sawtooth) and triangle generation.

Data written to this register sets the increment value for the ramp on each clock cycles. For ramp generation, the
increment is determined by the normalised frequency according to the value:

Inc= 216 * Fnorm

since the DAC is a 16 bit device.

For triangle waveforms, the upper 16 bits specify the start value for triangle generation on each positive slope at
the zero crosssing point whilst the lower 16 bits specify the end value for triangle generation on each negative
slope at the zero crosssing point.

D31 to D24:

D31 Triangle start value D15, msb (zero crossing, positive slope)

D30 Triangle start value D14

D29 Triangle start value D13

D28 Triangle start value D12

D27 Triangle start value D11

D26 Triangle start value D10

D25 Triangle start value D9

D24 Triangle start value D8

D23 to D16:

D23 Triangle start value D7

D22 Triangle start value D6

D21 Triangle start value D5

D20 Triangle start value D4

D19 Triangle start value D3

D18 Triangle start value D2

D17 Triangle start value D1

D16 Triangle start value D0, lsb

D15 to D8:

D15 Ramp increment, Triangle end value D15 msb (zero crossing,
negative slope)

D14 Ramp increment, Triangle end value D14

D13 Ramp increment, Triangle end value D13

D12 Ramp increment, Triangle end value D12

D11 Ramp increment, Triangle end value D11

D10 Ramp increment, Triangle end value D10

D9 Ramp increment, Triangle end value D9

Page 38 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D15 to D8:

D8 Ramp increment, Triangle end value D8

D7 to D0:

D7 Ramp increment, Triangle end value D7

D6 Ramp increment, Triangle end value D6

D5 Ramp increment, Triangle end value D5

D4 Ramp increment, Triangle end value D4

D3 Ramp increment, Triangle end value D3

D2 Ramp increment, Triangle end value D2

D1 Ramp increment, Triangle end value D1

D0 Ramp increment, Triangle end value D0, lsb

Page 39Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.7 Q_INC_REG (0x06)
Used for both simple ramp (sawtooth) and triangle generation.

Data written to this register sets the increment value for the ramp on each clock cycle. The increment for ramp
generation is determined by the normalised frequency according to the value:

Inc= 216 * Fnorm

since the DAC is a 16 bit device.

For triangle waveforms, the upper 16 bits specify the start value for triangle generation on each positive slope at
the zero crosssing point whilst the lower 16 bits specify the end value for triangle generation on each negative
slope at the zero crosssing point.

D31 to D24:

D31 Triangle start value D15, msb (zero crossing, positive slope)

D30 Triangle start value D14

D29 Triangle start value D13

D28 Triangle start value D12

D27 Triangle start value D11

D26 Triangle start value D10

D25 Triangle start value D9

D24 Triangle start value D8

D23 to D16:

D23 Triangle start value D7

D22 Triangle start value D6

D21 Triangle start value D5

D20 Triangle start value D4

D19 Triangle start value D3

D18 Triangle start value D2

D17 Triangle start value D1

D16 Triangle start value D0, lsb

D15 to D8:

D15 Ramp increment,Triangle end value D15 msb (zero crossing,
negative slope)

D14 Ramp increment,Triangle end value D14

D13 Ramp increment,Triangle end value D13

D12 Ramp increment,Triangle end value D12

D11 Ramp increment,Triangle end value D11

D10 Ramp increment,Triangle end value D10

D9 Ramp increment,Triangle end value D9

Page 40 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D15 to D8:

D8 Ramp increment,Triangle end value D8

D7 to D0:

D7 Ramp increment,Triangle end value D7

D6 Ramp increment,Triangle end value D6

D5 Ramp increment,Triangle end value D5

D4 Ramp increment,Triangle end value D4

D3 Ramp increment,Triangle end value D3

D2 Ramp increment,Triangle end value D2

D1 Ramp increment,Triangle end value D1

D0 Ramp increment,Triangle end value D0, lsb

Page 41Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.8 SYNTH_CNTRL_REG (0x07)
Used to specify the data and addresses for reads and writes via the serial interface for the AD9510 synthesiser.

The bottom 8 bits are the write data, with the next 8 bits forming the address for reads and writes. The top 16 bits
of this word (read data and status bits) are read-only.

D31 to D24:

D31 unused

D30 unused

D29 unused

D28 unused

D27 unused

D26 synth initialisation sequence busy. Copy of status reg bit 6

D25 synth serial busy signal. Copy of status reg bit 5

D24 synth serial busy signal. Copy of status reg bit 4

D23 to D16:

D23 D7 serial read data from the synth interface following a read cycle
(read-only).

D22 D6 serial read data

D21 D5 serial read data

D20 D4 serial read data

D19 D3 serial read data

D18 D2 serial read data

D17 D1 serial read data

D16 D0 serial read data

D15 to D8:

D15 D7 serial address for serial read/writes of the synth interface.

D14 D6 serial address

D13 D5 serial address

D12 D4 serial address

D11 D3 serial address

D10 D2 serial address

D9 D1 serial address

D8 D0 serial address

D7 to D0:

D7 D7 serial write data to write to the synth interface following a write
strobe.

D6 D6 serial write data

D5 D5 serial write data

Page 42 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D4 D4 serial write data

D3 D3 serial write data

D2 D2 serial write data

D1 D1 serial write data

D0 D0 serial write data

Page 43Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.9 SYNTH_STRB_REG (0x08)

D31 to D24:

D31 unused

D30 unused

D29 unused

D28 unused

D27 unused

D26 unused

D25 unused

D24 unused

D23 to D16:

D23 unused

D22 unused

D21 unused

D20 unused

D19 unused

D18 unused

D17 unused

D16 unused

D15 to D8:

D15 unused

D14 unused

D13 unused

D12 unused

D11 unused

D10 unused

D9 unused

D8 unused

D7 to D0:

D7 Unused.

D6 Unused.

D5 Unused.

D4 Unused.

D3 Unused.

D2 Init strobe-setting this bit high triggers a synthesiser serial interface
initialisation (write) sequence. This bit is self-clearing.

Page 44 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D1
Write strobe-setting this bit high triggers a synthesiser serial
interface write cycle using the values in the control register. This bit
is self-clearing.

D0 Read strobe-setting this bit high triggers a synthesiser serial
interface read cycle. This bit is self-clearing.

Page 45Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.10 IDAC_CNTRL_REG (0x09)
Used to specify the data and addresses for reads and writes via the serial interface for the I channel DAC.

The bottom 8 bits are the write data, with the next 8 bits forming the address. The top 16 bits of this word (read
data and status bits) are read-only.

D31 to D24:

D31 unused

D30 unused

D29 unused

D28 unused

D27 unused

D26 IDAC serial initialisation sequence busy. Copy of status reg bit 6

D25 IDAC serial busy signal. Copy of status reg bit 5

D24 IDAC serial busy signal. Copy of status reg bit 4

D23 to D16:

D23 D7 serial read data from the IDAC interface following a read cycle
(read-only).

D22 D6 serial read data

D21 D5 serial read data

D20 D4 serial read data

D19 D3 serial read data

D18 D2 serial read data

D17 D1 serial read data

D16 D0 serial read data

D15 to D8:

D15 D7 serial address for serial read/writes of the IDAC interface.

D14 D6 serial address

D13 D5 serial address

D12 D4 serial address

D11 D3 serial address

D10 D2 serial address

D9 D1 serial address

D8 D0 serial address

D7 to D0:

D7 D7 serial write data to write to the IDAC interface following a write
strobe.

D6 D6 serial write data

D5 D5 serial write data

Page 46 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D4 D4 serial write data

D3 D3 serial write data

D2 D2 serial write data

D1 D1 serial write data

D0 D0 serial write data

Page 47Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.11 IDAC_STRB_REG (0x0A)
Triggers serial reads, writes or forces the initialisation sequence to be active on the serial interface for the I
channel DAC. Write only

D31 to D24:

D31 Unused

D30 Unused

D29 Unused

D28 Unused

D27 Unused

D26 Unused

D25 Unused

D24 Unused

D23 to D16:

D23 Unused.

D22 Unused.

D21 Unused.

D20 Unused.

D19 Unused.

D18 Unused.

D17 Unused.

D16 Unused.

D15 to D8:

D15 Unused.

D14 Unused.

D13 Unused.

D12 Unused.

D11 Unused.

D10 Unused.

D9 Unused.

D8 Unused.

D7 to D0:

D7 Unused.

D6 Unused.

D5 Unused.

D4 Unused.

D3 Unused.

Page 48 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 Init strobe-setting this bit high triggers a IDAC serial interface
initialisation (write) sequence. This bit is self-clearing.

D1 Write strobe-setting this bit high triggers a IDAC serial interface write
cycle using the values in the control register. This bit is self-clearing.

D0 Read strobe-setting this bit high triggers a IDAC serial interface read
cycle. This bit is self-clearing.

Page 49Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.12 QDAC_CNTRL_REG (0x0B)
Used to specify the data and addresses for reads and writes via the serial interface for the Q channel DAC.

The bottom 8 bits are the write data, with the next 8 bits forming the address. The top 16 bits of this word (read
data and status bits) are read-only.

D31 to D24:

D31 unused

D30 unused

D29 unused

D28 unused

D27 unused

D26 QDAC serial initialisation sequence busy. Copy of status reg bit 6

D25 QDAC serial busy signal. Copy of status reg bit 5

D24 QDAC serial busy signal. Copy of status reg bit 4

D23 to D16:

D23 D7 serial read data from the QDAC interface following a read cycle
(read-only).

D22 D6 serial read data

D21 D5 serial read data

D20 D4 serial read data

D19 D3 serial read data

D18 D2 serial read data

D17 D1 serial read data

D16 D0 serial read data

D15 to D8:

D15 D7 serial address for serial read/writes of the QDAC interface.

D14 D6 serial address

D13 D5 serial address

D12 D4 serial address

D11 D3 serial address

D10 D2 serial address

D9 D1 serial address

D8 D0 serial address

D7 to D0:

D7 D7 serial write data to write to the QDAC interface following a write
strobe.

D6 D6 serial write data

D5 D5 serial write data

Page 50 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D4 D4 serial write data

D3 D3 serial write data

D2 D2 serial write data

D1 D1 serial write data

D0 D0 serial write data

Page 51Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.13 QDAC_STRB_REG (0x0C)
Triggers serial reads, writes or forces the initialisation sequence to be active on the serial interface for the Q
channel DAC. Write only

D31 to D24:

D31 Unused

D30 Unused

D29 Unused

D28 Unused

D27 Unused

D26 Unused

D25 Unused

D24 Unused

D23 to D16:

D23 Unused

D22 Unused

D21 Unused

D20 Unused

D19 Unused

D18 Unused

D17 Unused

D16 Unused

D15 to D8:

D15 Unused

D14 Unused

D13 Unused

D12 Unused

D11 Unused

D10 Unused

D9 Unused

D8 Unused

D7 to D0:

D7 Unused.

D6 Unused.

D5 Unused.

D4 Unused.

D3 Unused.

Page 52 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 Init strobe-setting this bit high triggers a QDAC serial interface
initialisation (write) sequence. This bit is self-clearing.

D1
Write strobe-setting this bit high triggers a QDAC serial interface
write cycle using the values in the control register. This bit is self-
clearing.

D0 Read strobe-setting this bit high triggers a QDAC serial interface
read cycle. This bit is self-clearing.

Page 53Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.14 DEVICE_REG (0x0D)
This register provides 4 separate bytes for controlling the initialisation sequence and the DLL setting
(clock-frequency dependent) used in the DAC automatic initialisation sequence.

The top 16 bits (1 byte for each channel) are used to specify the DLL setting forced into the DAC serial
initialisation stream to handle differences between different DACs.

The bottom 16 bits (1 byte for each channel) allow dynamic selection of the (device specific) DAC initialisation
sequence if required.

D31 to D24:

D31 QDACDLL configuration D7 (byte inserted into initialisation
sequence triggered by strobe bit).

D30 QDACDLL configuration D6

D29 QDACDLL configuration D5

D28 QDACDLL configuration D4

D27 QDACDLL configuration D3

D26 QDACDLL configuration D2

D25 QDACDLL configuration D1

D24 QDACDLL configuration D0

D23 to D16:

D23 IDACDLL configuration D7 (byte inserted into initialisation sequence
triggered by strobe bit).

D22 IDACDLL configuration D6

D21 IDACDLL configuration D5

D20 IDACDLL configuration D4

D19 IDACDLL configuration D3

D18 IDACDLL configuration D2

D17 IDACDLL configuration D1

D16 IDACDLL configuration D0

D15 to D8:

D15 Q channel DAC type code D7

D14 Q channel DAC type code D6

D13 Q channel DAC type code D5

D12 Q channel DAC type code D4

D11 Q channel DAC type code D3

D10 Q channel DAC type code D2

D9 Q channel DAC type code D1

D8 Q channel DAC type code D0
D7 to D0:

D7 I channel DAC type code D7

Page 54 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D6 I channel DAC type code D6

D5 I channel DAC type code D5

D4 I channel DAC type code D4

D3 I channel DAC type code D3

D2 I channel DAC type code D2

D1 I channel DAC type code D1

D0 I channel DAC type code D0

Legal values for the DAC type bits (read via serial interface from DAC register CONFIG0\, bits D4-D2 inclusive)
are:

DAC Type: Device ID: Device Code:

DAC5681 111 0x02

DAC5681Z 010 0x04

DAC5682Z 000 0x03

Page 55Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.15 I_DDSINIT_REG(0x0E)
This register provides a mechanism to specify the phase offset of the I channel from that of the default 0
degrees when operating with the DDS signal (sine) selected. Data is scaled in the same way as frequency
increments

The DDS generator has a 32-bit phase accumulator; a value of 0x8000_0000 corresponds to a phase offset of
180 degrees. The initial phase offset is given by:

Phase = 360 degrees * RegVal/(232)

where RegVal is the register setting

D31 to D24:

D31 D31 DDS phase msb

D30 D30 DDS phase bit

D29 D29 DDS phase bit

D28 D28 DDS phase bit

D27 D27 DDS phase bit

D26 D26 DDS phase bit

D25 D25 DDS phase bit

D24 D24 DDS phase bit

D23 to D16:

D23 D23 DDS phase bit

D22 D22 DDS phase bit

D21 D21 DDS phase bit

D20 D20 DDS phase bit

D19 D19 DDS phase bit

D18 D18 DDS phase bit

D17 D17 DDS phase bit

D16 D16 DDS phase bit

D15 to D8:

D15 D15 DDS phase bit

D14 D14 DDS phase bit

D13 D13 DDS phase bit

D12 D12 DDS phase bit

D11 D11 DDS phase bit

D10 D10 DDS phase bit

D9 D9 DDS phase bit

D8 D8 DDS phase bit
D7 to D0:

D7 D7 DDS phase bit

Page 56 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D6 D6 DDS phase bit

D5 D5 DDS phase bit

D4 D4 DDS phase bit

D3 D3 DDS phase bit

D2 D2 DDS phase bit

D1 D1 DDS phase bit

D0 D0 DDS phase bit lsb

Page 57Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.16 Q_DDSINIT_REG(0x0F)
This register provides a mechanism to specify the phase offset of the Q channel from that of the default 0
degrees when operating with the DDS signal (sine) selected. Data is scaled in the same way as frequency
increments

The DDS generator has a 32-bit phase accumulator; a value of 0x8000_0000 corresponds to a phase offset of
180 degrees. The initial phase offset is given by:

Phase = 360 degrees * RegVal/(232)

where RegVal is the register setting

D31 to D24:

D31 D31 DDS phase msb

D30 D30 DDS phase bit

D29 D29 DDS phase bit

D28 D28 DDS phase bit

D27 D27 DDS phase bit

D26 D26 DDS phase bit

D25 D25 DDS phase bit

D24 D24 DDS phase bit

D23 to D16:

D23 D23 DDS phase bit

D22 D22 DDS phase bit

D21 D21 DDS phase bit

D20 D20 DDS phase bit

D19 D19 DDS phase bit

D18 D18 DDS phase bit

D17 D17 DDS phase bit

D16 D16 DDS phase bit

D15 to D8:

D15 D15 DDS phase bit

D14 D14 DDS phase bit

D13 D13 DDS phase bit

D12 D12 DDS phase bit

D11 D11 DDS phase bit

D10 D10 DDS phase bit

D9 D9 DDS phase bit

D8 D8 DDS phase bit
D7 to D0:

D7 D7 DDS phase bit

Page 58 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D6 D6 DDS phase bit

D5 D5 DDS phase bit

D4 D4 DDS phase bit

D3 D3 DDS phase bit

D2 D2 DDS phase bit

D1 D1 DDS phase bit

D0 D0 DDS phase bit lsb

Page 59Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.17 IPATTERN_REG (0x10)
This register provides two 16 bit values which are used to control data generation for triangle and pulse
(square) waveforms and also serve to specify the data for self test operation on the I channel.

When generating triangle waveforms, bits D31 to D16 of this register determine the gradient (increment per DAC
sample clock cycle) which controls the value applied to the DAC data pins for the negative slope. Bits D15 to D0
determine the gradient (increment per DAC sample clock cycle) which controls the value applied to the DAC data
pins for the positive slope:

When generating pulse waveforms, bits D31 to D16 determine the value applied to the DAC pins for the 'space'
duration and bits D15 to D0 determine the value applied to the DAC pins for the 'mark' duration in counts of
FABRCLK cycles.Additional bits in the AUXCNTRL register extend this to give DAC sample clock resolution of
pulse widths.

When generating the DAC pattern self test sequence, both this and the IPATTERN_REG2 register are
programmed with 0xAAAA5555. These two registers are concatenated to specify the 4-sample sequence output
during self-test operation. Other patterns may be used to check individual bits etc.

D31 to D24:

D31 Triangle neg slope bit 15, Pulse Space level bit 15, msb

D30 Triangle neg slope bit 14, Pulse Space level bit 14

D29 Triangle neg slope bit 13, Pulse Space level bit 13

D28 Triangle neg slope bit 12, Pulse Space level bit 12

D27 Triangle neg slope bit 11, Pulse Space level bit 11

D26 Triangle neg slope bit 10, Pulse Space level bit 10

D25 Triangle neg slope bit 9, Pulse Space level bit 9

D24 Triangle neg slope bit 8, Pulse Space level bit 8

D23 to D16:

D23 Triangle Neg slope bit 7, Pulse Space level bit 7

D22 Triangle Neg slope bit 6, Pulse Space level bit 6

D21 Triangle Neg slope bit 5, Pulse Space level bit 5

D20 Triangle Neg slope bit 4, Pulse Space level bit 4

D19 Triangle Neg slope bit 3, Pulse Space level bit 3

D18 Triangle Neg slope bit 2, Pulse Space level bit 2

D17 Triangle Neg slope bit 1, Pulse Space level bit 1

D16 Triangle Neg slope bit 0, Pulse Space level bit 0, lsb

D15 to D8:

D15 Pos slope bit 15, Mark level bit 15, msb

D14 Pos slope bit 14, Mark level bit 14

D13 Pos slope bit 13, Mark level bit 13

D12 Pos slope bit 12, Mark level bit 12

D11 Pos slope bit 11, Mark level bit 11

Page 60 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D15 to D8:

D10 Pos slope bit 10, Mark level bit 10

D9 Pos slope bit 9, Mark level bit 9

D8 Pos slope bit 8, Mark level bit 8

D7 to D0:

D7 Mark level bit 7/ Pos slope bit 7

D6 Mark level bit 6/ Pos slope bit 6

D5 Mark level bit 5/ Pos slope bit 5

D4 Mark level bit 4/ Pos slope bit 4

D3 Mark level bit 3/ Pos slope bit 3

D2 Mark level bit 2/ Pos slope bit 2

D1 Mark level bit 1/ Pos slope bit 1

D0 Mark level bit 0, lsb

Page 61Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.18 QPATTERN_REG (0x11)
This register provides two 16 bit values which are used to control data generation for triangle and pulse
(square) waveforms and also serve to specify the data for self test operation on the Q channel.

When generating triangle waveforms, bits D31 to D16 of this register determine the gradient (increment per DAC
sample clock cycle) which controls the value applied to the DAC data pins for the negative slope. Bits D15 to D0
determine the gradient (increment per DAC sample clock cycle) which controls the value applied to the DAC data
pins for the positive slope:

When generating pulse waveforms, bits D31 to D16 determine the value applied to the DAC pins for the 'space'
duration and bits D15 to D0 determine the value applied to the DAC pins for the 'mark' duration in counts of
FABRCLK cycles.Additional bits in the AUXCNTRL register extend this to give DAC sample clock resolution of
pulse widths.

When generating the DAC pattern self test sequence, both this and the QPATTERN_REG2 register are
programmed with 0xAAAA5555. These two registers are concatenated to specify the 4-sample sequence output
during self-test operation. Other patterns may be used to check individual bits etc.

D31 to D24:

D31 Triangle neg slope bit 15, Pulse Space level bit 15, msb

D30 Triangle neg slope bit 14, Pulse Space level bit 14

D29 Triangle neg slope bit 13, Pulse Space level bit 13

D28 Triangle neg slope bit 12, Pulse Space level bit 12

D27 Triangle neg slope bit 11, Pulse Space level bit 11

D26 Triangle neg slope bit 10, Pulse Space level bit 10

D25 Triangle neg slope bit 9, Pulse Space level bit 9

D24 Triangle neg slope bit 8, Pulse Space level bit 8

D23 to D16:

D23 Triangle Neg slope bit 7, Pulse Space level bit 7

D22 Triangle Neg slope bit 6, Pulse Space level bit 6

D21 Triangle Neg slope bit 5, Pulse Space level bit 5

D20 Triangle Neg slope bit 4, Pulse Space level bit 4

D19 Triangle Neg slope bit 3, Pulse Space level bit 3

D18 Triangle Neg slope bit 2, Pulse Space level bit 2

D17 Triangle Neg slope bit 1, Pulse Space level bit 1

D16 Triangle Neg slope bit 0, Pulse Space level bit 0, lsb

D15 to D8:

D15 Pos slope bit 15, Mark level bit 15, msb

D14 Pos slope bit 14, Mark level bit 14

D13 Pos slope bit 13, Mark level bit 13

D12 Pos slope bit 12, Mark level bit 12

D11 Pos slope bit 11, Mark level bit 11

Page 62 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D15 to D8:

D10 Pos slope bit 10, Mark level bit 10

D9 Pos slope bit 9, Mark level bit 9

D8 Pos slope bit 8, Mark level bit 8

D7 to D0:

D7 Mark level bit 7/ Pos slope bit 7

D6 Mark level bit 6/ Pos slope bit 6

D5 Mark level bit 5/ Pos slope bit 5

D4 Mark level bit 4/ Pos slope bit 4

D3 Mark level bit 3/ Pos slope bit 3

D2 Mark level bit 2/ Pos slope bit 2

D1 Mark level bit 1/ Pos slope bit 1

D0 Mark level bit 0, lsb

Page 63Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.19 IPATTERN_REG2 (0x12)
This register provides two 16 bit values which are used to control data generation for triangle and pulse
(square) waveforms and also serve to specify the data for self test operation on the I channel.

When generating triangle waveforms, bits D31 to D16 determine determine the count of increments required for
the negative slope and bits D15 to D0 determine the count of increments required for the positive slope. In both
cases counts are in FABRCLK cycles.

When generating pulse waveforms, bits D31 to D16 determine the voltage level of the 'space' segment of the
pulse whilst bits D15 to D0 determine the voltage level of the 'mark' segment of the pulse.

When generating the DAC pattern self test sequence, both this and the IPATTERN_REG register are
programmed with 0xAAAA5555 to output the required sequence.

D31 to D24:

D31 Neg slope bit 15,Space level bit 15 , msb

D30 Neg slope bit 14,Space level bit 14

D29 Neg slope bit 13,Space level bit 13

D28 Neg slope bit 12,Space level bit 12

D27 Neg slope bit 11,Space level bit 11

D26 Neg slope bit 10,Space level bit 10

D25 Neg slope bit 9,Space level bit 9

D24 Neg slope bit 8,Space level bit 8

D23 to D16:

D23 Neg slope bit 7,Space level bit 7

D22 Neg slope bit 6,Space level bit 6

D21 Neg slope bit 5,Space level bit 5

D20 Neg slope bit 4,Space level bit 4

D19 Neg slope bit 3,Space level bit 3

D18 Neg slope bit 2,Space level bit 2

D17 Neg slope bit 1,Space level bit 1

D16 Neg slope bit 0,Space level bit 0 , lsb

D15 to D8:

D15 Pos slope bit 15,Mark level bit 15 , msb

D14 Pos slope bit 14,Mark level bit 14

D13 Pos slope bit 13,Mark level bit 13

D12 Pos slope bit 12,Mark level bit 12

D11 Pos slope bit 11,Mark level bit 11

D10 Pos slope bit 10,Mark level bit 10

D9 Pos slope bit 9,Mark level bit 9

D8 Pos slope bit 8,Mark level bit 8

Page 64 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Note that pulse and triangle periods are constrained to be integer multiples of FABRCLK cycles.

Page 65Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.20 QPATTERN_REG2 (0x13)
This register provides two 16 bit values which are used to control data generation for triangle and pulse
(square) waveforms and also serve to specify the data for self test operation on the Q channel.

When generating triangle waveforms, bits D31 to D16 determine determine the count of increments required for
the negative slope and bits D15 to D0 determine the count of increments required for the positive slope. In both
cases counts are in FABRCLK cycles.

When generating pulse waveforms, bits D31 to D16 determine the voltage level of the 'space' segment of the
pulse whilst bits D15 to D0 determine the voltage level of the 'mark' segment of the pulse.

When generating the DAC pattern self test sequence, both this and the QPATTERN_REG register are
programmed with 0xAAAA5555 to output the required sequence.

D31 to D24:

D31 Neg slope bit 15,Space level bit 15 , msb

D30 Neg slope bit 14,Space level bit 14

D29 Neg slope bit 13,Space level bit 13

D28 Neg slope bit 12,Space level bit 12

D27 Neg slope bit 11,Space level bit 11

D26 Neg slope bit 10,Space level bit 10

D25 Neg slope bit 9,Space level bit 9

D24 Neg slope bit 8,Space level bit 8

D23 to D16:

D23 Neg slope bit 7,Space level bit 7

D22 Neg slope bit 6,Space level bit 6

D21 Neg slope bit 5,Space level bit 5

D20 Neg slope bit 4,Space level bit 4

D19 Neg slope bit 3,Space level bit 3

D18 Neg slope bit 2,Space level bit 2

D17 Neg slope bit 1,Space level bit 1

D16 Neg slope bit 0,Space level bit 0 , lsb

D15 to D8:

D15 Pos slope bit 15,Mark level bit 15 , msb

D14 Pos slope bit 14,Mark level bit 14

D13 Pos slope bit 13,Mark level bit 13

D12 Pos slope bit 12,Mark level bit 12

D11 Pos slope bit 11,Mark level bit 11

D10 Pos slope bit 10,Mark level bit 10

D9 Pos slope bit 9,Mark level bit 9

D8 Pos slope bit 8,Mark level bit 8

Page 66 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Note that pulse and triangle periods are constrained to be integer multiples of FABRCLK cycles.

Page 67Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.21 MEAS0_VAL_REG (0x14)
This register provides a 24 bit measurement (determined by CKMEAS_WIDTH) of the period of the unused clock
input from the synthesiser for determining the frequency of the internal or external clock.

The count returned is based on a 10ms gate time (attribute gate_long= TRUE) or a 1ms gate time in the
clock_meas component

Unused bits read as 0

D31 to D24:

D31 N/A

D30 N/A

D29 N/A

D28 N/A

D27 N/A

D26 N/A

D25 N/A

D24 N/A

D23 to D16:

D23 D23 gate-time multiplier MSB

D22 D22 gate-time multiplier

D21 D21 gate-time multiplier

D20 D20 gate-time multiplier

D19 D19 gate-time multiplier

D18 D18 gate-time multiplier

D17 D17 gate-time multiplier

D16 D16 gate-time multiplier

D15 to D8:

D15 D15 gate-time multiplier

D14 D14 gate-time multiplier

D13 D13 gate-time multiplier

D12 D12 gate-time multiplier

D11 D11 gate-time multiplier

D10 D10 gate-time multiplier

D9 D9 gate-time multiplier

D8 D8 gate-time multiplier

D7 to D0:

D7 D7 gate-time multiplier

D6 D6 gate-time multiplier

Page 68 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D5 D5 gate-time multiplier

D4 D4 gate-time multiplier

D3 D3 gate-time multiplier

D2 D2 gate-time multiplier

D1 D1 gate-time multiplier

D0 D0 gate-time multiplier LSB

Page 69Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.22 MEAS1_VAL_REG (0x15)
This register provides a 24 bit measurement (determined by CKMEAS_WIDTH) of the period of the transitions
on the synthesiser STATUS signal for frequency measurements of the ref oscillator etc.

The count returned is based on a 10ms gate time (attribute gate_long= TRUE) or a 1ms gate time in the
clock_meas component

Unused bits read as 0

D31 to D24:

D31 N/A

D30 N/A

D29 N/A

D28 N/A

D27 N/A

D26 N/A

D25 N/A

D24 N/A

D23 to D16:

D23 D23 gate-time multiplier MSB

D22 D22 gate-time multiplier

D21 D21 gate-time multiplier

D20 D20 gate-time multiplier

D19 D19 gate-time multiplier

D18 D18 gate-time multiplier

D17 D17 gate-time multiplier

D16 D16 gate-time multiplier

D15 to D8:

D15 D15 gate-time multiplier

D14 D14 gate-time multiplier

D13 D13 gate-time multiplier

D12 D12 gate-time multiplier

D11 D11 gate-time multiplier

D10 D10 gate-time multiplier

D9 D9 gate-time multiplier

D8 D8 gate-time multiplier

D7 to D0:

D7 D7 gate-time multiplier

D6 D6 gate-time multiplier

Page 70 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D5 D5 gate-time multiplier

D4 D4 gate-time multiplier

D3 D3 gate-time multiplier

D2 D2 gate-time multiplier

D1 D1 gate-time multiplier

D0 D0 gate-time multiplier LSB

Page 71Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.23 MEAS2_VAL_REG (0x16)
Address allocated for frequency measurements but unused

Unused bits read as 0

D31 to D24:

D31 N/A

D30 N/A

D29 N/A

D28 N/A

D27 N/A

D26 N/A

D25 N/A

D24 N/A

D23 to D16:

D23 N/A

D22 N/A

D21 N/A

D20 N/A

D19 N/A

D18 N/A

D17 N/A

D16 N/A

D15 to D8:

D15 N/A

D14 N/A

D13 N/A

D12 N/A

D11 N/A

D10 N/A

D9 N/A

D8 N/A

D7 to D0:

D7 N/A

D6 N/A

D5 N/A

D4 N/A

D3 N/A

Page 72 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 N/A

D1 N/A

D0 N/A

Page 73Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.24 FREERUN_CNT_REG (0x17)
This register is a free-running 32bit counter updated at 1 us intervals for timing use. All bits are read-only and are
used by software routines for implementing time delays with 1 us resolution.

D31 to D24:

D31 free-running counter MSB

D30 free-running counter

D29 free-running counter

D28 free-running counter

D27 free-running counter

D26 free-running counter

D25 free-running counter

D24 free-running counter

D23 to D16:

D23 D23 free-running counter

D22 D22 free-running counter

D21 D21 free-running counter

D20 D20 free-running counter

D19 D19 free-running counter

D18 D18 free-running counter

D17 D17 free-running counter

D16 D16 free-running counter

D15 to D8:

D15 D15 free-running counter

D14 D14 free-running counter

D13 D13 free-running counter

D12 D12 free-running counter

D11 D11 free-running counter

D10 D10 free-running counter

D9 D9 free-running counter

D8 D8 free-running counter

D7 to D0:

D7 D7 free-running counter

D6 D6 free-running counter

D5 D5 free-running counter

D4 D4 free-running counter

D3 D3 free-running counter

Page 74 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 D2 free-running counter

D1 D1 free-running counter

D0 D0 free-running counter LSB, changes at 1 us intervals

Page 75Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.25 I_ARBWRITE_REG (0x18)
Writes to this register are copied into the IARB memory to form two 16 bit samples, with the earliest sample in
the lower word.

D31 to D24:

D31 bit D15 of 16-bit sample number N+1

D30 bit D14

D29 bit D13

D28 bit D12

D27 bit D11

D26 bit D10

D25 bit D9

D24 bit D8

D23 to D16:

D23 bit D7 of 16-bit sample number N+1

D22 bit D6

D21 bit D5

D20 bit D4

D19 bit D3

D18 bit D2

D17 bit D1

D16 bit D0, LSB of 16-bit sample number N+1

D15 to D8:

D15 bit D15 of 16-bit sample number N

D14 bit D14

D13 bit D13

D12 bit D12

D11 bit D11

D10 bit D10

D9 N/A

D8 N/A

D7 to D0:

D7 bit D7 of 16-bit sample number N

D6 bit D6

D5 bit D5

D4 bit D4

D3 bit D3

Page 76 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 bit D2

D1 bit D1

D0 D0, LSB of 16-bit sample number N

Page 77Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.26 Q_ARBWRITE_REG (0x19)
Writes to this register are copied into the QARB memory to form two 16 bit samples, with the earliest sample in
the lower word.

D31 to D24:

D31 bit D15 of 16-bit sample number N+1

D30 bit D14

D29 bit D13

D28 bit D12

D27 bit D11

D26 bit D10

D25 bit D9

D24 bit D8

D23 to D16:

D23 bit D7 of 16-bit sample number N+1

D22 bit D6

D21 bit D5

D20 bit D4

D19 bit D3

D18 bit D2

D17 bit D1

D16 D0, LSB of 16-bit sample number N+1

D15 to D8:

D15 bit D15 of 16-bit sample number N

D14 bit D14

D13 bit D13

D12 bit D12

D11 bit D11

D10 bit D10

D9 N/A

D8 N/A

D7 to D0:

D7 bit D7 of 16-bit sample number N

D6 bit D6

D5 bit D5

D4 bit D4

D3 bit D3

Page 78 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 bit D2

D1 bit D1

D0 D0, LSB of 16-bit sample number N

Page 79Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.27 ARB _CNTRL_REG (0x1A)
This register controls loading, running and synchronisation of the arbitrary waveform generators.

D31 to D24:

D31 N/A

D30 N/A

D29 N/A

D28 N/A

D27 N/A

D26 MSB of ARB sequence length

D25 D9 ARB sequence length

D24 D8 ARB sequence length

D23 to D16:

D23 D7 ARB sequence length

D22 D6 ARB sequence length

D21 D5 ARB sequence length

D20 D4 ARB sequence length

D19 D3 ARB sequence length

D18 D2 ARB sequence length

D17 D1 ARB sequence length

D16 LSB of ARB sequence length

D15 to D8:

D15 QARB tick to AUX port driver mux, 1= tick as driver else trigger
signal from control register.

D14 N/A

D13 N/A

D12 N/A

D11 N/A

D10 Load enable for QARB length value

D9 Burst/continuous select for QARB sequence

D8 Run enable for QARB sequence

D7 to D0:

D7 IARB tick to TRIG port driver mux, 1= tick as driver else trigger
signal from control register.

D6 N/A

D5 N/A

D4 N/A

D3 N/A

Page 80 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D2 Load enable for IARB length value

D1 Burst/continuous select for IARB sequence

D0 Run enable for IARB sequence

Page 81Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.28 ARB _TICK_REG (0x1B)
This register provides two 16 bit values for use with the ARB generator. The top 16 bits determine the marker
width in FABRCLK cycles, although this is limites to 4096 (12 bits) max by the hardware.The bottom 16 bits
determine the repetition rate of the ARB waveform, which consists of 1 cycle of data from the ARB RAM followed
by (N-1) cycles of zero output, each the same length as the ARB RAM waveform.

D31 to D24:

D31 ARB sequence marker width MSB

D30 D14 marker width

D29 D13 marker width

D28 D12 marker width

D27 D11 marker width

D26 D10 marker width

D25 D9 marker width

D24 D8 marker width

D23 to D16:

D23 D7 marker width

D22 D6 marker width

D21 D5 marker width

D20 D4 marker width

D19 D3 marker width

D18 D2 marker width

D17 D1 marker width

D16 ARB sequence marker width LSB

D15 to D8:

D15 MSB of 16-bit repeat rate control for ARB sequence

D14 D14 repeat rate control

D13 D13 repeat rate control

D12 D12 repeat rate control

D11 D11 repeat rate control

D10 D10 repeat rate control

D9 D9 repeat rate control

D8 D8 repeat rate control

D7 to D0:

D7 D7 repeat rate control

D6 D6 repeat rate control

D5 D5 repeat rate control

D4 D4 repeat rate control

Page 82 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D3 D3 repeat rate control

D2 D2 repeat rate control

D1 D1 repeat rate control

D0 LSB of 16-bit repeat rate control for ARB sequence.

Page 83Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.29 AUXCNTRL_REG (0x1E)
Miscellaneous control bits and mark/space duration fine control for pulse waveforms.

D31 to D24:

D31 Unused

D30 Unused

D29 Unused

D28 Unused

D27 Unused

D26 Unused

D25 Unused

D24 Unused

D23 to D16:

D23 Unused

D22 Q channel mark duration fine control, bit 2, msb.

D21 Q channel mark duration fine control, bit 1.

D20 Q channel mark duration fine control, bit 0, lsb.

D19 Unused.

D18 I channel mark duration fine control, bit 2, msb.

D17 I channel mark duration fine control, bit 1.

D16 I channel mark duration fine control, bit 0, lsb.

D15 to D8:

D15 Unused

D14 Unused

D13 Unused

D12 Unused

D11 Unused

D10 Unused

D9 Unused

D8 Unused

D7 to D0:

D7 Unused

D6 Unused

D5 Unused

D4 Active-high asynchronous BUFR reset

D3 Software control of synth FUNC bit

D2 Unused

Page 84 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D7 to D0:

D1 XRM board revision (high for rev2 and rev1 boards polarity
correction - redundant)

D0 Phase value mux

The fine control bits for the I and Q channels allow extension of the mark duration in increments of the DACCLK
period. Normally durations can only be stepped in multiples of the FABRCLK period. Setting a value other than
zero modifies the data produced for the last space duration to output the mark level earlier than the 4-clock
boundary. Setting a value greater than 4 effectively reduces the duration of the mark. The use of eight states
allows the waveforms to maintain synchronism at the rising edge of the mark state even if differing mark/space
ratios are programmed.

Note that pulse periods are still constrained to be multiples of FABRCLK cycles

Fine Adjust: Phase1: Phase2:

0 4 spaces 0 mark

1 3 spaces 1 marks

2 2 spaces 2 marks

3 1 spaces 3 marks

4 0 spaces 4 marks

5 1 mark 3 spaces

6 2 marks 2 spaces

7 3 marks 1 space

D1 (XRM board revision)-setting this bit high routes DAC data with polarities for rev2 boards; setting this bit low
(the default) routes DAC data with polarities for rev3 boards. This should always be 0 unless a rev2 board is
used.

D0 (Phase value mux) -the default value (0) selects the mid-point/width values of the valid phase window for
readback. A value of selects the start-point/end-point values of the valid phase window for readback.

Sync bit (for synth) -defaults to high since default function is active-low reset of the synth.

Page 85Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

4.30 PHASE_VALUE_REG (0x1F)
This register provides two 16 bit values which are sign-extended versions of the 9 bit phase alignment settings.
By default. the values returned are the mid-point of the phase window (lower 16 bits) and the width of the
window (upper 16 bits), which is centred on the mid-point value. Setting bit 0 of the AUXCNTRL_REG above
switches this to provide the start point of the valid phase window (lower 16 bits) and the end point of the valid
phase window (upper 16 bits).

This value is valid only for Virtex4 and Virtex5 designs. For Virtex6 and later, this register always returns a fixed
value as no phase alignment is required

D31 to D24:

D31 sign bit copy

D30 sign bit copy

D29 sign bit copy

D28 sign bit copy

D27 sign bit copy

D26 sign bit copy

D25 sign bit copy

D24 D8 (sign and magnitude) of width (end point) of valid DCM phase
window

D23 to D16:

D23 D7 of width (end point) of valid DCM phase window

D22 D6 of width (end point) of valid DCM phase window

D21 D5 of width (end point) of valid DCM phase window

D20 D4 of width (end point) of valid DCM phase window

D19 D3 of width (end point) of valid DCM phase window

D18 D2 of width (end point) of valid DCM phase window

D17 D1 of width (end point) of valid DCM phase window

D16 D0 of width (end hoint) of valid DCM phase window

D15 to D8:

D15 sign bit copy

D14 sign bit copy

D13 sign bit copy

D12 sign bit copy

D11 sign bit copy

D10 sign bit copy

D9 sign bit copy

D8 D8 (sign and magnitude) of mid-point (start point) of valid DCM
phase window

D7 to D0:

D7 D7 mid point (start point) of valid DCM phase window

Page 86 Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

D6 D6 mid point (start point) of valid DCM phase window

D5 D5 mid point (start point) of valid DCM phase window

D4 D4 mid point (start point) of valid DCM phase window

D3 D3 mid point (start point) of valid DCM phase window

D2 D2 mid point (start point) of valid DCM phase window

D1 D1 mid point (start point) of valid DCM phase window

D0 D0 mid point (start point) of valid DCM phase window

Page 87Register Description
xrm-dac-d4-1g-manual_v2_2.pdf

XRM(2)-DAC-D4/1G User Guide
V2.2 - Mar 8, 2018

Revision History
Date Revision Nature of Change

26/02/09 - Draft

03/04/09 1.0 First issue with release 1.2 of code

12/08/09 1.1
Added signalling voltage, alternative clocking scheme and
updated register bits

14/09/09 1.2 Fixed minor typos.

09/06/10 1.3
Updated to reflect code changes for release 2.0 renamed
as User Guide.

15/06/10 1.4 Initial XML version of document

22/11/17 2.0

Added Virtex7, Kintex7 and Vivado information. Added ARB
ram signal generation and programmable sine phase
descriptions. Fixed various typos and added waveform
generation description.

08/12/17 2.1 Fixed typos and updated waveform generation description.

08/03/18 2.2 Modified to be XRM/XRM2 manual

Address: 4 West Silvermills Lane,
Edinburgh, EH3 5BD, UK

Telephone: +44 131 558 2600
Fax: +44 131 558 2700
email: sales@alpha-data.com
website: http://www.alpha-data.com

Address: 611 Corporate Circle Suite H
Golden, CO 80401

Telephone: (303) 954 8768
Fax: (866) 820 9956 - toll free
email: sales@alpha-data.com
website: http://www.alpha-data.com

4.8

	1 Introduction
	1.1 Block Diagram
	1.2 XRM and XRM2
	1.2.1 Signalling Voltage

	1.3 Build Level
	1.4 Alpha Data SDK Versions
	1.5 Xilinx Tool Versions
	1.6 ISE Projects
	1.6.1 Structure

	1.7 Vivado Projects
	1.7.1 Vivado Folder Structure

	2 Hardware
	2.1 Hardware Operation
	2.2 Connector Signals
	2.3 DAC Serial Interface
	2.4 DAC Programming
	2.5 Synthesiser Serial Interface
	2.6 Synthesiser Programming
	2.7 DAC Selftest
	2.7.1 Pattern testing
	2.7.2 Fifo Test
	2.7.3 Selftest

	2.8 DAC DLL Control
	2.9 DAC Sync
	2.10 Multiple DAC synchronisation
	2.11 Clocking on Virtex4, Virtex5
	2.11.1 Low Frequency Operation

	2.12 Clocking on Virtex6, Kintex7 and Virtex7
	2.13 Data Generation
	2.14 Performance
	2.15 Board Layout

	3 VHDL Structure
	3.1 Introduction
	3.2 Major HDL Components
	3.2.1 Clock generation and alignment
	3.2.2 Data Generation and Output
	3.2.3 Local bus interface
	3.2.3.1 Virtex4, Virtex5
	3.2.3.2 Virtex6, Virtex7, Kintex7

	3.2.4 Serial Control
	3.2.5 Digital I/O
	3.2.6 General Purpose I/O
	3.2.7 Host Access via Local Bus
	3.2.7.1 Virtex4, Virtex5
	3.2.7.2 Virtex6, Virtex7, Kintex7

	3.3 Waveform Generator Operation
	3.3.1 Sine Waveform Generator
	3.3.2 Ramp Waveform Generator
	3.3.3 Triangle Waveform Generator
	3.3.4 Square/Pulse Waveform Generator
	3.3.5 Arbitrary Waveform Generator
	3.3.6 Self Test Pattern
	3.3.7 Sine Test

	4 Register Description
	4.1 FPGA_CNTRL_REG (0x00)
	4.2 FPGA_STATUS_REG (0x01)
	4.3 CNTR_STAT_REG (0x02)
	4.4 I_DDS_REG (0x03)
	4.5 Q_DDS_REG (0x04)
	4.6 I_INC_REG (0x05)
	4.7 Q_INC_REG (0x06)
	4.8 SYNTH_CNTRL_REG (0x07)
	4.9 SYNTH_STRB_REG (0x08)
	4.10 IDAC_CNTRL_REG (0x09)
	4.11 IDAC_STRB_REG (0x0A)
	4.12 QDAC_CNTRL_REG (0x0B)
	4.13 QDAC_STRB_REG (0x0C)
	4.14 DEVICE_REG (0x0D)
	4.15 I_DDSINIT_REG(0x0E)
	4.16 Q_DDSINIT_REG(0x0F)
	4.17 IPATTERN_REG (0x10)
	4.18 QPATTERN_REG (0x11)
	4.19 IPATTERN_REG2 (0x12)
	4.20 QPATTERN_REG2 (0x13)
	4.21 MEAS0_VAL_REG (0x14)
	4.22 MEAS1_VAL_REG (0x15)
	4.23 MEAS2_VAL_REG (0x16)
	4.24 FREERUN_CNT_REG (0x17)
	4.25 I_ARBWRITE_REG (0x18)
	4.26 Q_ARBWRITE_REG (0x19)
	4.27 ARB _CNTRL_REG (0x1A)
	4.28 ARB _TICK_REG (0x1B)
	4.29 AUXCNTRL_REG (0x1E)
	4.30 PHASE_VALUE_REG (0x1F)

	Tables
	Table 1: SMA and UFL Connectors
	Table 2: Clock Muxing (D25,D24)

	Figures
	Figure 1: Block Diagram
	Figure 2: Default Project Structure
	Figure 3: Vivado Project Structure
	Figure 4: Vivado Files
	Figure 5: Virtex 4 Virtex 5 Clocking Scheme
	Figure 6: Low frequency clocking scheme
	Figure 7: Kintex 7 Virtex 7 Clocking Scheme
	Figure 8: XRM(2)-DAC-D4-1G Layout
	Figure 9: Waveform Selection Diagram

